feat: add LocalAI local embedding model support (#1021)
Co-authored-by: StyleZhang <jasonapring2015@outlook.com>pull/1053/head
parent
b5953039de
commit
417c19577a
@ -0,0 +1,29 @@
|
||||
from langchain.embeddings import LocalAIEmbeddings
|
||||
|
||||
from replicate.exceptions import ModelError, ReplicateError
|
||||
|
||||
from core.model_providers.error import LLMBadRequestError
|
||||
from core.model_providers.providers.base import BaseModelProvider
|
||||
from core.model_providers.models.embedding.base import BaseEmbedding
|
||||
|
||||
|
||||
class LocalAIEmbedding(BaseEmbedding):
|
||||
def __init__(self, model_provider: BaseModelProvider, name: str):
|
||||
credentials = model_provider.get_model_credentials(
|
||||
model_name=name,
|
||||
model_type=self.type
|
||||
)
|
||||
|
||||
client = LocalAIEmbeddings(
|
||||
model=name,
|
||||
openai_api_key="1",
|
||||
openai_api_base=credentials['server_url'],
|
||||
)
|
||||
|
||||
super().__init__(model_provider, client, name)
|
||||
|
||||
def handle_exceptions(self, ex: Exception) -> Exception:
|
||||
if isinstance(ex, (ModelError, ReplicateError)):
|
||||
return LLMBadRequestError(f"LocalAI embedding: {str(ex)}")
|
||||
else:
|
||||
return ex
|
||||
@ -0,0 +1,131 @@
|
||||
import logging
|
||||
from typing import List, Optional, Any
|
||||
|
||||
import openai
|
||||
from langchain.callbacks.manager import Callbacks
|
||||
from langchain.schema import LLMResult, get_buffer_string
|
||||
|
||||
from core.model_providers.error import LLMBadRequestError, LLMAPIConnectionError, LLMAPIUnavailableError, \
|
||||
LLMRateLimitError, LLMAuthorizationError
|
||||
from core.model_providers.providers.base import BaseModelProvider
|
||||
from core.third_party.langchain.llms.chat_open_ai import EnhanceChatOpenAI
|
||||
from core.third_party.langchain.llms.open_ai import EnhanceOpenAI
|
||||
from core.model_providers.models.llm.base import BaseLLM
|
||||
from core.model_providers.models.entity.message import PromptMessage
|
||||
from core.model_providers.models.entity.model_params import ModelMode, ModelKwargs
|
||||
|
||||
|
||||
class LocalAIModel(BaseLLM):
|
||||
def __init__(self, model_provider: BaseModelProvider,
|
||||
name: str,
|
||||
model_kwargs: ModelKwargs,
|
||||
streaming: bool = False,
|
||||
callbacks: Callbacks = None):
|
||||
credentials = model_provider.get_model_credentials(
|
||||
model_name=name,
|
||||
model_type=self.type
|
||||
)
|
||||
|
||||
if credentials['completion_type'] == 'chat_completion':
|
||||
self.model_mode = ModelMode.CHAT
|
||||
else:
|
||||
self.model_mode = ModelMode.COMPLETION
|
||||
|
||||
super().__init__(model_provider, name, model_kwargs, streaming, callbacks)
|
||||
|
||||
def _init_client(self) -> Any:
|
||||
provider_model_kwargs = self._to_model_kwargs_input(self.model_rules, self.model_kwargs)
|
||||
if self.model_mode == ModelMode.COMPLETION:
|
||||
client = EnhanceOpenAI(
|
||||
model_name=self.name,
|
||||
streaming=self.streaming,
|
||||
callbacks=self.callbacks,
|
||||
request_timeout=60,
|
||||
openai_api_key="1",
|
||||
openai_api_base=self.credentials['server_url'] + '/v1',
|
||||
**provider_model_kwargs
|
||||
)
|
||||
else:
|
||||
extra_model_kwargs = {
|
||||
'top_p': provider_model_kwargs.get('top_p')
|
||||
}
|
||||
|
||||
client = EnhanceChatOpenAI(
|
||||
model_name=self.name,
|
||||
temperature=provider_model_kwargs.get('temperature'),
|
||||
max_tokens=provider_model_kwargs.get('max_tokens'),
|
||||
model_kwargs=extra_model_kwargs,
|
||||
streaming=self.streaming,
|
||||
callbacks=self.callbacks,
|
||||
request_timeout=60,
|
||||
openai_api_key="1",
|
||||
openai_api_base=self.credentials['server_url'] + '/v1'
|
||||
)
|
||||
|
||||
return client
|
||||
|
||||
def _run(self, messages: List[PromptMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
callbacks: Callbacks = None,
|
||||
**kwargs) -> LLMResult:
|
||||
"""
|
||||
run predict by prompt messages and stop words.
|
||||
|
||||
:param messages:
|
||||
:param stop:
|
||||
:param callbacks:
|
||||
:return:
|
||||
"""
|
||||
prompts = self._get_prompt_from_messages(messages)
|
||||
return self._client.generate([prompts], stop, callbacks)
|
||||
|
||||
def get_num_tokens(self, messages: List[PromptMessage]) -> int:
|
||||
"""
|
||||
get num tokens of prompt messages.
|
||||
|
||||
:param messages:
|
||||
:return:
|
||||
"""
|
||||
prompts = self._get_prompt_from_messages(messages)
|
||||
if isinstance(prompts, str):
|
||||
return self._client.get_num_tokens(prompts)
|
||||
else:
|
||||
return max(sum([self._client.get_num_tokens(get_buffer_string([m])) for m in prompts]) - len(prompts), 0)
|
||||
|
||||
def _set_model_kwargs(self, model_kwargs: ModelKwargs):
|
||||
provider_model_kwargs = self._to_model_kwargs_input(self.model_rules, model_kwargs)
|
||||
if self.model_mode == ModelMode.COMPLETION:
|
||||
for k, v in provider_model_kwargs.items():
|
||||
if hasattr(self.client, k):
|
||||
setattr(self.client, k, v)
|
||||
else:
|
||||
extra_model_kwargs = {
|
||||
'top_p': provider_model_kwargs.get('top_p')
|
||||
}
|
||||
|
||||
self.client.temperature = provider_model_kwargs.get('temperature')
|
||||
self.client.max_tokens = provider_model_kwargs.get('max_tokens')
|
||||
self.client.model_kwargs = extra_model_kwargs
|
||||
|
||||
def handle_exceptions(self, ex: Exception) -> Exception:
|
||||
if isinstance(ex, openai.error.InvalidRequestError):
|
||||
logging.warning("Invalid request to LocalAI API.")
|
||||
return LLMBadRequestError(str(ex))
|
||||
elif isinstance(ex, openai.error.APIConnectionError):
|
||||
logging.warning("Failed to connect to LocalAI API.")
|
||||
return LLMAPIConnectionError(ex.__class__.__name__ + ":" + str(ex))
|
||||
elif isinstance(ex, (openai.error.APIError, openai.error.ServiceUnavailableError, openai.error.Timeout)):
|
||||
logging.warning("LocalAI service unavailable.")
|
||||
return LLMAPIUnavailableError(ex.__class__.__name__ + ":" + str(ex))
|
||||
elif isinstance(ex, openai.error.RateLimitError):
|
||||
return LLMRateLimitError(str(ex))
|
||||
elif isinstance(ex, openai.error.AuthenticationError):
|
||||
return LLMAuthorizationError(str(ex))
|
||||
elif isinstance(ex, openai.error.OpenAIError):
|
||||
return LLMBadRequestError(ex.__class__.__name__ + ":" + str(ex))
|
||||
else:
|
||||
return ex
|
||||
|
||||
@classmethod
|
||||
def support_streaming(cls):
|
||||
return True
|
||||
@ -0,0 +1,164 @@
|
||||
import json
|
||||
from typing import Type
|
||||
|
||||
from langchain.embeddings import LocalAIEmbeddings
|
||||
from langchain.schema import HumanMessage
|
||||
|
||||
from core.helper import encrypter
|
||||
from core.model_providers.models.embedding.localai_embedding import LocalAIEmbedding
|
||||
from core.model_providers.models.entity.model_params import ModelKwargsRules, ModelType, KwargRule
|
||||
from core.model_providers.models.llm.localai_model import LocalAIModel
|
||||
from core.model_providers.providers.base import BaseModelProvider, CredentialsValidateFailedError
|
||||
|
||||
from core.model_providers.models.base import BaseProviderModel
|
||||
from core.third_party.langchain.llms.chat_open_ai import EnhanceChatOpenAI
|
||||
from core.third_party.langchain.llms.open_ai import EnhanceOpenAI
|
||||
from models.provider import ProviderType
|
||||
|
||||
|
||||
class LocalAIProvider(BaseModelProvider):
|
||||
@property
|
||||
def provider_name(self):
|
||||
"""
|
||||
Returns the name of a provider.
|
||||
"""
|
||||
return 'localai'
|
||||
|
||||
def _get_fixed_model_list(self, model_type: ModelType) -> list[dict]:
|
||||
return []
|
||||
|
||||
def get_model_class(self, model_type: ModelType) -> Type[BaseProviderModel]:
|
||||
"""
|
||||
Returns the model class.
|
||||
|
||||
:param model_type:
|
||||
:return:
|
||||
"""
|
||||
if model_type == ModelType.TEXT_GENERATION:
|
||||
model_class = LocalAIModel
|
||||
elif model_type == ModelType.EMBEDDINGS:
|
||||
model_class = LocalAIEmbedding
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
return model_class
|
||||
|
||||
def get_model_parameter_rules(self, model_name: str, model_type: ModelType) -> ModelKwargsRules:
|
||||
"""
|
||||
get model parameter rules.
|
||||
|
||||
:param model_name:
|
||||
:param model_type:
|
||||
:return:
|
||||
"""
|
||||
return ModelKwargsRules(
|
||||
temperature=KwargRule[float](min=0, max=2, default=0.7),
|
||||
top_p=KwargRule[float](min=0, max=1, default=1),
|
||||
max_tokens=KwargRule[int](min=10, max=4097, default=16),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def is_model_credentials_valid_or_raise(cls, model_name: str, model_type: ModelType, credentials: dict):
|
||||
"""
|
||||
check model credentials valid.
|
||||
|
||||
:param model_name:
|
||||
:param model_type:
|
||||
:param credentials:
|
||||
"""
|
||||
if 'server_url' not in credentials:
|
||||
raise CredentialsValidateFailedError('LocalAI Server URL must be provided.')
|
||||
|
||||
try:
|
||||
if model_type == ModelType.EMBEDDINGS:
|
||||
model = LocalAIEmbeddings(
|
||||
model=model_name,
|
||||
openai_api_key='1',
|
||||
openai_api_base=credentials['server_url']
|
||||
)
|
||||
|
||||
model.embed_query("ping")
|
||||
else:
|
||||
if ('completion_type' not in credentials
|
||||
or credentials['completion_type'] not in ['completion', 'chat_completion']):
|
||||
raise CredentialsValidateFailedError('LocalAI Completion Type must be provided.')
|
||||
|
||||
if credentials['completion_type'] == 'chat_completion':
|
||||
model = EnhanceChatOpenAI(
|
||||
model_name=model_name,
|
||||
openai_api_key='1',
|
||||
openai_api_base=credentials['server_url'] + '/v1',
|
||||
max_tokens=10,
|
||||
request_timeout=60,
|
||||
)
|
||||
|
||||
model([HumanMessage(content='ping')])
|
||||
else:
|
||||
model = EnhanceOpenAI(
|
||||
model_name=model_name,
|
||||
openai_api_key='1',
|
||||
openai_api_base=credentials['server_url'] + '/v1',
|
||||
max_tokens=10,
|
||||
request_timeout=60,
|
||||
)
|
||||
|
||||
model('ping')
|
||||
except Exception as ex:
|
||||
raise CredentialsValidateFailedError(str(ex))
|
||||
|
||||
@classmethod
|
||||
def encrypt_model_credentials(cls, tenant_id: str, model_name: str, model_type: ModelType,
|
||||
credentials: dict) -> dict:
|
||||
"""
|
||||
encrypt model credentials for save.
|
||||
|
||||
:param tenant_id:
|
||||
:param model_name:
|
||||
:param model_type:
|
||||
:param credentials:
|
||||
:return:
|
||||
"""
|
||||
credentials['server_url'] = encrypter.encrypt_token(tenant_id, credentials['server_url'])
|
||||
return credentials
|
||||
|
||||
def get_model_credentials(self, model_name: str, model_type: ModelType, obfuscated: bool = False) -> dict:
|
||||
"""
|
||||
get credentials for llm use.
|
||||
|
||||
:param model_name:
|
||||
:param model_type:
|
||||
:param obfuscated:
|
||||
:return:
|
||||
"""
|
||||
if self.provider.provider_type != ProviderType.CUSTOM.value:
|
||||
raise NotImplementedError
|
||||
|
||||
provider_model = self._get_provider_model(model_name, model_type)
|
||||
|
||||
if not provider_model.encrypted_config:
|
||||
return {
|
||||
'server_url': None,
|
||||
}
|
||||
|
||||
credentials = json.loads(provider_model.encrypted_config)
|
||||
if credentials['server_url']:
|
||||
credentials['server_url'] = encrypter.decrypt_token(
|
||||
self.provider.tenant_id,
|
||||
credentials['server_url']
|
||||
)
|
||||
|
||||
if obfuscated:
|
||||
credentials['server_url'] = encrypter.obfuscated_token(credentials['server_url'])
|
||||
|
||||
return credentials
|
||||
|
||||
@classmethod
|
||||
def is_provider_credentials_valid_or_raise(cls, credentials: dict):
|
||||
return
|
||||
|
||||
@classmethod
|
||||
def encrypt_provider_credentials(cls, tenant_id: str, credentials: dict) -> dict:
|
||||
return {}
|
||||
|
||||
def get_provider_credentials(self, obfuscated: bool = False) -> dict:
|
||||
return {}
|
||||
@ -0,0 +1,7 @@
|
||||
{
|
||||
"support_provider_types": [
|
||||
"custom"
|
||||
],
|
||||
"system_config": null,
|
||||
"model_flexibility": "configurable"
|
||||
}
|
||||
@ -0,0 +1,61 @@
|
||||
import json
|
||||
import os
|
||||
from unittest.mock import patch, MagicMock
|
||||
|
||||
from core.model_providers.models.embedding.localai_embedding import LocalAIEmbedding
|
||||
from core.model_providers.models.entity.model_params import ModelType
|
||||
from core.model_providers.providers.localai_provider import LocalAIProvider
|
||||
from models.provider import Provider, ProviderType, ProviderModel
|
||||
|
||||
|
||||
def get_mock_provider():
|
||||
return Provider(
|
||||
id='provider_id',
|
||||
tenant_id='tenant_id',
|
||||
provider_name='localai',
|
||||
provider_type=ProviderType.CUSTOM.value,
|
||||
encrypted_config='',
|
||||
is_valid=True,
|
||||
)
|
||||
|
||||
|
||||
def get_mock_embedding_model(mocker):
|
||||
model_name = 'text-embedding-ada-002'
|
||||
server_url = os.environ['LOCALAI_SERVER_URL']
|
||||
model_provider = LocalAIProvider(provider=get_mock_provider())
|
||||
|
||||
mock_query = MagicMock()
|
||||
mock_query.filter.return_value.first.return_value = ProviderModel(
|
||||
provider_name='localai',
|
||||
model_name=model_name,
|
||||
model_type=ModelType.EMBEDDINGS.value,
|
||||
encrypted_config=json.dumps({
|
||||
'server_url': server_url,
|
||||
}),
|
||||
is_valid=True,
|
||||
)
|
||||
mocker.patch('extensions.ext_database.db.session.query', return_value=mock_query)
|
||||
|
||||
return LocalAIEmbedding(
|
||||
model_provider=model_provider,
|
||||
name=model_name
|
||||
)
|
||||
|
||||
|
||||
def decrypt_side_effect(tenant_id, encrypted_api_key):
|
||||
return encrypted_api_key
|
||||
|
||||
|
||||
@patch('core.helper.encrypter.decrypt_token', side_effect=decrypt_side_effect)
|
||||
def test_embed_documents(mock_decrypt, mocker):
|
||||
embedding_model = get_mock_embedding_model(mocker)
|
||||
rst = embedding_model.client.embed_documents(['test', 'test1'])
|
||||
assert isinstance(rst, list)
|
||||
assert len(rst) == 2
|
||||
|
||||
|
||||
@patch('core.helper.encrypter.decrypt_token', side_effect=decrypt_side_effect)
|
||||
def test_embed_query(mock_decrypt, mocker):
|
||||
embedding_model = get_mock_embedding_model(mocker)
|
||||
rst = embedding_model.client.embed_query('test')
|
||||
assert isinstance(rst, list)
|
||||
@ -0,0 +1,68 @@
|
||||
import json
|
||||
import os
|
||||
from unittest.mock import patch, MagicMock
|
||||
|
||||
from core.model_providers.models.llm.localai_model import LocalAIModel
|
||||
from core.model_providers.providers.localai_provider import LocalAIProvider
|
||||
from core.model_providers.models.entity.message import PromptMessage
|
||||
from core.model_providers.models.entity.model_params import ModelKwargs, ModelType
|
||||
from models.provider import Provider, ProviderType, ProviderModel
|
||||
|
||||
|
||||
def get_mock_provider(server_url):
|
||||
return Provider(
|
||||
id='provider_id',
|
||||
tenant_id='tenant_id',
|
||||
provider_name='localai',
|
||||
provider_type=ProviderType.CUSTOM.value,
|
||||
encrypted_config=json.dumps({}),
|
||||
is_valid=True,
|
||||
)
|
||||
|
||||
|
||||
def get_mock_model(model_name, mocker):
|
||||
model_kwargs = ModelKwargs(
|
||||
max_tokens=10,
|
||||
temperature=0
|
||||
)
|
||||
server_url = os.environ['LOCALAI_SERVER_URL']
|
||||
|
||||
mock_query = MagicMock()
|
||||
mock_query.filter.return_value.first.return_value = ProviderModel(
|
||||
provider_name='localai',
|
||||
model_name=model_name,
|
||||
model_type=ModelType.TEXT_GENERATION.value,
|
||||
encrypted_config=json.dumps({'server_url': server_url, 'completion_type': 'completion'}),
|
||||
is_valid=True,
|
||||
)
|
||||
mocker.patch('extensions.ext_database.db.session.query', return_value=mock_query)
|
||||
|
||||
openai_provider = LocalAIProvider(provider=get_mock_provider(server_url))
|
||||
return LocalAIModel(
|
||||
model_provider=openai_provider,
|
||||
name=model_name,
|
||||
model_kwargs=model_kwargs
|
||||
)
|
||||
|
||||
|
||||
def decrypt_side_effect(tenant_id, encrypted_openai_api_key):
|
||||
return encrypted_openai_api_key
|
||||
|
||||
|
||||
@patch('core.helper.encrypter.decrypt_token', side_effect=decrypt_side_effect)
|
||||
def test_get_num_tokens(mock_decrypt, mocker):
|
||||
openai_model = get_mock_model('ggml-gpt4all-j', mocker)
|
||||
rst = openai_model.get_num_tokens([PromptMessage(content='you are a kindness Assistant.')])
|
||||
assert rst > 0
|
||||
|
||||
|
||||
@patch('core.helper.encrypter.decrypt_token', side_effect=decrypt_side_effect)
|
||||
def test_run(mock_decrypt, mocker):
|
||||
mocker.patch('core.model_providers.providers.base.BaseModelProvider.update_last_used', return_value=None)
|
||||
|
||||
openai_model = get_mock_model('ggml-gpt4all-j', mocker)
|
||||
rst = openai_model.run(
|
||||
[PromptMessage(content='Human: Are you Human? you MUST only answer `y` or `n`? \nAssistant: ')],
|
||||
stop=['\nHuman:'],
|
||||
)
|
||||
assert len(rst.content) > 0
|
||||
@ -0,0 +1,116 @@
|
||||
import pytest
|
||||
from unittest.mock import patch, MagicMock
|
||||
import json
|
||||
|
||||
from core.model_providers.models.entity.model_params import ModelType
|
||||
from core.model_providers.providers.base import CredentialsValidateFailedError
|
||||
from core.model_providers.providers.localai_provider import LocalAIProvider
|
||||
from models.provider import ProviderType, Provider, ProviderModel
|
||||
|
||||
PROVIDER_NAME = 'localai'
|
||||
MODEL_PROVIDER_CLASS = LocalAIProvider
|
||||
VALIDATE_CREDENTIAL = {
|
||||
'server_url': 'http://127.0.0.1:8080/'
|
||||
}
|
||||
|
||||
|
||||
def encrypt_side_effect(tenant_id, encrypt_key):
|
||||
return f'encrypted_{encrypt_key}'
|
||||
|
||||
|
||||
def decrypt_side_effect(tenant_id, encrypted_key):
|
||||
return encrypted_key.replace('encrypted_', '')
|
||||
|
||||
|
||||
def test_is_credentials_valid_or_raise_valid(mocker):
|
||||
mocker.patch('langchain.embeddings.localai.LocalAIEmbeddings.embed_query',
|
||||
return_value="abc")
|
||||
|
||||
MODEL_PROVIDER_CLASS.is_model_credentials_valid_or_raise(
|
||||
model_name='username/test_model_name',
|
||||
model_type=ModelType.EMBEDDINGS,
|
||||
credentials=VALIDATE_CREDENTIAL.copy()
|
||||
)
|
||||
|
||||
|
||||
def test_is_credentials_valid_or_raise_invalid():
|
||||
# raise CredentialsValidateFailedError if server_url is not in credentials
|
||||
with pytest.raises(CredentialsValidateFailedError):
|
||||
MODEL_PROVIDER_CLASS.is_model_credentials_valid_or_raise(
|
||||
model_name='test_model_name',
|
||||
model_type=ModelType.EMBEDDINGS,
|
||||
credentials={}
|
||||
)
|
||||
|
||||
|
||||
@patch('core.helper.encrypter.encrypt_token', side_effect=encrypt_side_effect)
|
||||
def test_encrypt_model_credentials(mock_encrypt, mocker):
|
||||
server_url = 'http://127.0.0.1:8080/'
|
||||
|
||||
result = MODEL_PROVIDER_CLASS.encrypt_model_credentials(
|
||||
tenant_id='tenant_id',
|
||||
model_name='test_model_name',
|
||||
model_type=ModelType.EMBEDDINGS,
|
||||
credentials=VALIDATE_CREDENTIAL.copy()
|
||||
)
|
||||
mock_encrypt.assert_called_with('tenant_id', server_url)
|
||||
assert result['server_url'] == f'encrypted_{server_url}'
|
||||
|
||||
|
||||
@patch('core.helper.encrypter.decrypt_token', side_effect=decrypt_side_effect)
|
||||
def test_get_model_credentials_custom(mock_decrypt, mocker):
|
||||
provider = Provider(
|
||||
id='provider_id',
|
||||
tenant_id='tenant_id',
|
||||
provider_name=PROVIDER_NAME,
|
||||
provider_type=ProviderType.CUSTOM.value,
|
||||
encrypted_config=None,
|
||||
is_valid=True,
|
||||
)
|
||||
|
||||
encrypted_credential = VALIDATE_CREDENTIAL.copy()
|
||||
encrypted_credential['server_url'] = 'encrypted_' + encrypted_credential['server_url']
|
||||
|
||||
mock_query = MagicMock()
|
||||
mock_query.filter.return_value.first.return_value = ProviderModel(
|
||||
encrypted_config=json.dumps(encrypted_credential)
|
||||
)
|
||||
mocker.patch('extensions.ext_database.db.session.query', return_value=mock_query)
|
||||
|
||||
model_provider = MODEL_PROVIDER_CLASS(provider=provider)
|
||||
result = model_provider.get_model_credentials(
|
||||
model_name='test_model_name',
|
||||
model_type=ModelType.EMBEDDINGS
|
||||
)
|
||||
assert result['server_url'] == 'http://127.0.0.1:8080/'
|
||||
|
||||
|
||||
@patch('core.helper.encrypter.decrypt_token', side_effect=decrypt_side_effect)
|
||||
def test_get_model_credentials_obfuscated(mock_decrypt, mocker):
|
||||
provider = Provider(
|
||||
id='provider_id',
|
||||
tenant_id='tenant_id',
|
||||
provider_name=PROVIDER_NAME,
|
||||
provider_type=ProviderType.CUSTOM.value,
|
||||
encrypted_config=None,
|
||||
is_valid=True,
|
||||
)
|
||||
|
||||
encrypted_credential = VALIDATE_CREDENTIAL.copy()
|
||||
encrypted_credential['server_url'] = 'encrypted_' + encrypted_credential['server_url']
|
||||
|
||||
mock_query = MagicMock()
|
||||
mock_query.filter.return_value.first.return_value = ProviderModel(
|
||||
encrypted_config=json.dumps(encrypted_credential)
|
||||
)
|
||||
mocker.patch('extensions.ext_database.db.session.query', return_value=mock_query)
|
||||
|
||||
model_provider = MODEL_PROVIDER_CLASS(provider=provider)
|
||||
result = model_provider.get_model_credentials(
|
||||
model_name='test_model_name',
|
||||
model_type=ModelType.EMBEDDINGS,
|
||||
obfuscated=True
|
||||
)
|
||||
middle_token = result['server_url'][6:-2]
|
||||
assert len(middle_token) == max(len(VALIDATE_CREDENTIAL['server_url']) - 8, 0)
|
||||
assert all(char == '*' for char in middle_token)
|
||||
File diff suppressed because one or more lines are too long
|
After Width: | Height: | Size: 76 KiB |
File diff suppressed because one or more lines are too long
|
After Width: | Height: | Size: 73 KiB |
File diff suppressed because one or more lines are too long
@ -0,0 +1,14 @@
|
||||
// GENERATE BY script
|
||||
// DON NOT EDIT IT MANUALLY
|
||||
|
||||
import * as React from 'react'
|
||||
import data from './Localai.json'
|
||||
import IconBase from '@/app/components/base/icons/IconBase'
|
||||
import type { IconBaseProps, IconData } from '@/app/components/base/icons/IconBase'
|
||||
|
||||
const Icon = React.forwardRef<React.MutableRefObject<SVGElement>, Omit<IconBaseProps, 'data'>>((
|
||||
props,
|
||||
ref,
|
||||
) => <IconBase {...props} ref={ref} data={data as IconData} />)
|
||||
|
||||
export default Icon
|
||||
File diff suppressed because one or more lines are too long
@ -0,0 +1,14 @@
|
||||
// GENERATE BY script
|
||||
// DON NOT EDIT IT MANUALLY
|
||||
|
||||
import * as React from 'react'
|
||||
import data from './LocalaiText.json'
|
||||
import IconBase from '@/app/components/base/icons/IconBase'
|
||||
import type { IconBaseProps, IconData } from '@/app/components/base/icons/IconBase'
|
||||
|
||||
const Icon = React.forwardRef<React.MutableRefObject<SVGElement>, Omit<IconBaseProps, 'data'>>((
|
||||
props,
|
||||
ref,
|
||||
) => <IconBase {...props} ref={ref} data={data as IconData} />)
|
||||
|
||||
export default Icon
|
||||
Loading…
Reference in New Issue