|
|
|
|
@ -1,18 +1,32 @@
|
|
|
|
|
import base64
|
|
|
|
|
import mimetypes
|
|
|
|
|
from collections.abc import Generator
|
|
|
|
|
from typing import Optional, Union
|
|
|
|
|
from typing import Optional, Union, cast
|
|
|
|
|
|
|
|
|
|
import anthropic
|
|
|
|
|
import requests
|
|
|
|
|
from anthropic import Anthropic, Stream
|
|
|
|
|
from anthropic.types import Completion, completion_create_params
|
|
|
|
|
from anthropic.types import (
|
|
|
|
|
ContentBlockDeltaEvent,
|
|
|
|
|
Message,
|
|
|
|
|
MessageDeltaEvent,
|
|
|
|
|
MessageStartEvent,
|
|
|
|
|
MessageStopEvent,
|
|
|
|
|
MessageStreamEvent,
|
|
|
|
|
completion_create_params,
|
|
|
|
|
)
|
|
|
|
|
from httpx import Timeout
|
|
|
|
|
|
|
|
|
|
from core.model_runtime.callbacks.base_callback import Callback
|
|
|
|
|
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta
|
|
|
|
|
from core.model_runtime.entities.message_entities import (
|
|
|
|
|
AssistantPromptMessage,
|
|
|
|
|
ImagePromptMessageContent,
|
|
|
|
|
PromptMessage,
|
|
|
|
|
PromptMessageContentType,
|
|
|
|
|
PromptMessageTool,
|
|
|
|
|
SystemPromptMessage,
|
|
|
|
|
TextPromptMessageContent,
|
|
|
|
|
UserPromptMessage,
|
|
|
|
|
)
|
|
|
|
|
from core.model_runtime.errors.invoke import (
|
|
|
|
|
@ -35,6 +49,7 @@ if you are not sure about the structure.
|
|
|
|
|
</instructions>
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class AnthropicLargeLanguageModel(LargeLanguageModel):
|
|
|
|
|
def _invoke(self, model: str, credentials: dict,
|
|
|
|
|
prompt_messages: list[PromptMessage], model_parameters: dict,
|
|
|
|
|
@ -55,54 +70,114 @@ class AnthropicLargeLanguageModel(LargeLanguageModel):
|
|
|
|
|
:return: full response or stream response chunk generator result
|
|
|
|
|
"""
|
|
|
|
|
# invoke model
|
|
|
|
|
return self._generate(model, credentials, prompt_messages, model_parameters, stop, stream, user)
|
|
|
|
|
|
|
|
|
|
return self._chat_generate(model, credentials, prompt_messages, model_parameters, stop, stream, user)
|
|
|
|
|
|
|
|
|
|
def _chat_generate(self, model: str, credentials: dict,
|
|
|
|
|
prompt_messages: list[PromptMessage], model_parameters: dict, stop: Optional[list[str]] = None,
|
|
|
|
|
stream: bool = True, user: Optional[str] = None) -> Union[LLMResult, Generator]:
|
|
|
|
|
"""
|
|
|
|
|
Invoke llm chat model
|
|
|
|
|
|
|
|
|
|
:param model: model name
|
|
|
|
|
:param credentials: credentials
|
|
|
|
|
:param prompt_messages: prompt messages
|
|
|
|
|
:param model_parameters: model parameters
|
|
|
|
|
:param stop: stop words
|
|
|
|
|
:param stream: is stream response
|
|
|
|
|
:param user: unique user id
|
|
|
|
|
:return: full response or stream response chunk generator result
|
|
|
|
|
"""
|
|
|
|
|
# transform credentials to kwargs for model instance
|
|
|
|
|
credentials_kwargs = self._to_credential_kwargs(credentials)
|
|
|
|
|
|
|
|
|
|
# transform model parameters from completion api of anthropic to chat api
|
|
|
|
|
if 'max_tokens_to_sample' in model_parameters:
|
|
|
|
|
model_parameters['max_tokens'] = model_parameters.pop('max_tokens_to_sample')
|
|
|
|
|
|
|
|
|
|
# init model client
|
|
|
|
|
client = Anthropic(**credentials_kwargs)
|
|
|
|
|
|
|
|
|
|
extra_model_kwargs = {}
|
|
|
|
|
if stop:
|
|
|
|
|
extra_model_kwargs['stop_sequences'] = stop
|
|
|
|
|
|
|
|
|
|
if user:
|
|
|
|
|
extra_model_kwargs['metadata'] = completion_create_params.Metadata(user_id=user)
|
|
|
|
|
|
|
|
|
|
system, prompt_message_dicts = self._convert_prompt_messages(prompt_messages)
|
|
|
|
|
|
|
|
|
|
if system:
|
|
|
|
|
extra_model_kwargs['system'] = system
|
|
|
|
|
|
|
|
|
|
# chat model
|
|
|
|
|
response = client.messages.create(
|
|
|
|
|
model=model,
|
|
|
|
|
messages=prompt_message_dicts,
|
|
|
|
|
stream=stream,
|
|
|
|
|
**model_parameters,
|
|
|
|
|
**extra_model_kwargs
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
if stream:
|
|
|
|
|
return self._handle_chat_generate_stream_response(model, credentials, response, prompt_messages)
|
|
|
|
|
|
|
|
|
|
return self._handle_chat_generate_response(model, credentials, response, prompt_messages)
|
|
|
|
|
|
|
|
|
|
def _code_block_mode_wrapper(self, model: str, credentials: dict, prompt_messages: list[PromptMessage],
|
|
|
|
|
model_parameters: dict, tools: Optional[list[PromptMessageTool]] = None,
|
|
|
|
|
stop: Optional[list[str]] = None, stream: bool = True, user: Optional[str] = None,
|
|
|
|
|
callbacks: list[Callback] = None) -> Union[LLMResult, Generator]:
|
|
|
|
|
model_parameters: dict, tools: Optional[list[PromptMessageTool]] = None,
|
|
|
|
|
stop: Optional[list[str]] = None, stream: bool = True, user: Optional[str] = None,
|
|
|
|
|
callbacks: list[Callback] = None) -> Union[LLMResult, Generator]:
|
|
|
|
|
"""
|
|
|
|
|
Code block mode wrapper for invoking large language model
|
|
|
|
|
"""
|
|
|
|
|
if 'response_format' in model_parameters and model_parameters['response_format']:
|
|
|
|
|
stop = stop or []
|
|
|
|
|
self._transform_json_prompts(
|
|
|
|
|
model, credentials, prompt_messages, model_parameters, tools, stop, stream, user, model_parameters['response_format']
|
|
|
|
|
# chat model
|
|
|
|
|
self._transform_chat_json_prompts(
|
|
|
|
|
model=model,
|
|
|
|
|
credentials=credentials,
|
|
|
|
|
prompt_messages=prompt_messages,
|
|
|
|
|
model_parameters=model_parameters,
|
|
|
|
|
tools=tools,
|
|
|
|
|
stop=stop,
|
|
|
|
|
stream=stream,
|
|
|
|
|
user=user,
|
|
|
|
|
response_format=model_parameters['response_format']
|
|
|
|
|
)
|
|
|
|
|
model_parameters.pop('response_format')
|
|
|
|
|
|
|
|
|
|
return self._invoke(model, credentials, prompt_messages, model_parameters, tools, stop, stream, user)
|
|
|
|
|
|
|
|
|
|
def _transform_json_prompts(self, model: str, credentials: dict,
|
|
|
|
|
prompt_messages: list[PromptMessage], model_parameters: dict,
|
|
|
|
|
tools: list[PromptMessageTool] | None = None, stop: list[str] | None = None,
|
|
|
|
|
stream: bool = True, user: str | None = None, response_format: str = 'JSON') \
|
|
|
|
|
-> None:
|
|
|
|
|
def _transform_chat_json_prompts(self, model: str, credentials: dict,
|
|
|
|
|
prompt_messages: list[PromptMessage], model_parameters: dict,
|
|
|
|
|
tools: list[PromptMessageTool] | None = None, stop: list[str] | None = None,
|
|
|
|
|
stream: bool = True, user: str | None = None, response_format: str = 'JSON') \
|
|
|
|
|
-> None:
|
|
|
|
|
"""
|
|
|
|
|
Transform json prompts
|
|
|
|
|
"""
|
|
|
|
|
if "```\n" not in stop:
|
|
|
|
|
stop.append("```\n")
|
|
|
|
|
if "\n```" not in stop:
|
|
|
|
|
stop.append("\n```")
|
|
|
|
|
|
|
|
|
|
# check if there is a system message
|
|
|
|
|
if len(prompt_messages) > 0 and isinstance(prompt_messages[0], SystemPromptMessage):
|
|
|
|
|
# override the system message
|
|
|
|
|
prompt_messages[0] = SystemPromptMessage(
|
|
|
|
|
content=ANTHROPIC_BLOCK_MODE_PROMPT
|
|
|
|
|
.replace("{{instructions}}", prompt_messages[0].content)
|
|
|
|
|
.replace("{{block}}", response_format)
|
|
|
|
|
.replace("{{instructions}}", prompt_messages[0].content)
|
|
|
|
|
.replace("{{block}}", response_format)
|
|
|
|
|
)
|
|
|
|
|
prompt_messages.append(AssistantPromptMessage(content=f"\n```{response_format}"))
|
|
|
|
|
else:
|
|
|
|
|
# insert the system message
|
|
|
|
|
prompt_messages.insert(0, SystemPromptMessage(
|
|
|
|
|
content=ANTHROPIC_BLOCK_MODE_PROMPT
|
|
|
|
|
.replace("{{instructions}}", f"Please output a valid {response_format} object.")
|
|
|
|
|
.replace("{{block}}", response_format)
|
|
|
|
|
.replace("{{instructions}}", f"Please output a valid {response_format} object.")
|
|
|
|
|
.replace("{{block}}", response_format)
|
|
|
|
|
))
|
|
|
|
|
|
|
|
|
|
prompt_messages.append(AssistantPromptMessage(
|
|
|
|
|
content=f"```{response_format}\n"
|
|
|
|
|
))
|
|
|
|
|
prompt_messages.append(AssistantPromptMessage(content=f"\n```{response_format}"))
|
|
|
|
|
|
|
|
|
|
def get_num_tokens(self, model: str, credentials: dict, prompt_messages: list[PromptMessage],
|
|
|
|
|
tools: Optional[list[PromptMessageTool]] = None) -> int:
|
|
|
|
|
@ -129,7 +204,7 @@ class AnthropicLargeLanguageModel(LargeLanguageModel):
|
|
|
|
|
:return:
|
|
|
|
|
"""
|
|
|
|
|
try:
|
|
|
|
|
self._generate(
|
|
|
|
|
self._chat_generate(
|
|
|
|
|
model=model,
|
|
|
|
|
credentials=credentials,
|
|
|
|
|
prompt_messages=[
|
|
|
|
|
@ -137,58 +212,17 @@ class AnthropicLargeLanguageModel(LargeLanguageModel):
|
|
|
|
|
],
|
|
|
|
|
model_parameters={
|
|
|
|
|
"temperature": 0,
|
|
|
|
|
"max_tokens_to_sample": 20,
|
|
|
|
|
"max_tokens": 20,
|
|
|
|
|
},
|
|
|
|
|
stream=False
|
|
|
|
|
)
|
|
|
|
|
except Exception as ex:
|
|
|
|
|
raise CredentialsValidateFailedError(str(ex))
|
|
|
|
|
|
|
|
|
|
def _generate(self, model: str, credentials: dict,
|
|
|
|
|
prompt_messages: list[PromptMessage], model_parameters: dict,
|
|
|
|
|
stop: Optional[list[str]] = None, stream: bool = True,
|
|
|
|
|
user: Optional[str] = None) -> Union[LLMResult, Generator]:
|
|
|
|
|
def _handle_chat_generate_response(self, model: str, credentials: dict, response: Message,
|
|
|
|
|
prompt_messages: list[PromptMessage]) -> LLMResult:
|
|
|
|
|
"""
|
|
|
|
|
Invoke large language model
|
|
|
|
|
|
|
|
|
|
:param model: model name
|
|
|
|
|
:param credentials: credentials kwargs
|
|
|
|
|
:param prompt_messages: prompt messages
|
|
|
|
|
:param model_parameters: model parameters
|
|
|
|
|
:param stop: stop words
|
|
|
|
|
:param stream: is stream response
|
|
|
|
|
:param user: unique user id
|
|
|
|
|
:return: full response or stream response chunk generator result
|
|
|
|
|
"""
|
|
|
|
|
# transform credentials to kwargs for model instance
|
|
|
|
|
credentials_kwargs = self._to_credential_kwargs(credentials)
|
|
|
|
|
|
|
|
|
|
client = Anthropic(**credentials_kwargs)
|
|
|
|
|
|
|
|
|
|
extra_model_kwargs = {}
|
|
|
|
|
if stop:
|
|
|
|
|
extra_model_kwargs['stop_sequences'] = stop
|
|
|
|
|
|
|
|
|
|
if user:
|
|
|
|
|
extra_model_kwargs['metadata'] = completion_create_params.Metadata(user_id=user)
|
|
|
|
|
|
|
|
|
|
response = client.completions.create(
|
|
|
|
|
model=model,
|
|
|
|
|
prompt=self._convert_messages_to_prompt_anthropic(prompt_messages),
|
|
|
|
|
stream=stream,
|
|
|
|
|
**model_parameters,
|
|
|
|
|
**extra_model_kwargs
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
if stream:
|
|
|
|
|
return self._handle_generate_stream_response(model, credentials, response, prompt_messages)
|
|
|
|
|
|
|
|
|
|
return self._handle_generate_response(model, credentials, response, prompt_messages)
|
|
|
|
|
|
|
|
|
|
def _handle_generate_response(self, model: str, credentials: dict, response: Completion,
|
|
|
|
|
prompt_messages: list[PromptMessage]) -> LLMResult:
|
|
|
|
|
"""
|
|
|
|
|
Handle llm response
|
|
|
|
|
Handle llm chat response
|
|
|
|
|
|
|
|
|
|
:param model: model name
|
|
|
|
|
:param credentials: credentials
|
|
|
|
|
@ -198,75 +232,89 @@ class AnthropicLargeLanguageModel(LargeLanguageModel):
|
|
|
|
|
"""
|
|
|
|
|
# transform assistant message to prompt message
|
|
|
|
|
assistant_prompt_message = AssistantPromptMessage(
|
|
|
|
|
content=response.completion
|
|
|
|
|
content=response.content[0].text
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# calculate num tokens
|
|
|
|
|
prompt_tokens = self.get_num_tokens(model, credentials, prompt_messages)
|
|
|
|
|
completion_tokens = self.get_num_tokens(model, credentials, [assistant_prompt_message])
|
|
|
|
|
if response.usage:
|
|
|
|
|
# transform usage
|
|
|
|
|
prompt_tokens = response.usage.input_tokens
|
|
|
|
|
completion_tokens = response.usage.output_tokens
|
|
|
|
|
else:
|
|
|
|
|
# calculate num tokens
|
|
|
|
|
prompt_tokens = self.get_num_tokens(model, credentials, prompt_messages)
|
|
|
|
|
completion_tokens = self.get_num_tokens(model, credentials, [assistant_prompt_message])
|
|
|
|
|
|
|
|
|
|
# transform usage
|
|
|
|
|
usage = self._calc_response_usage(model, credentials, prompt_tokens, completion_tokens)
|
|
|
|
|
|
|
|
|
|
# transform response
|
|
|
|
|
result = LLMResult(
|
|
|
|
|
response = LLMResult(
|
|
|
|
|
model=response.model,
|
|
|
|
|
prompt_messages=prompt_messages,
|
|
|
|
|
message=assistant_prompt_message,
|
|
|
|
|
usage=usage,
|
|
|
|
|
usage=usage
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
return result
|
|
|
|
|
return response
|
|
|
|
|
|
|
|
|
|
def _handle_generate_stream_response(self, model: str, credentials: dict, response: Stream[Completion],
|
|
|
|
|
prompt_messages: list[PromptMessage]) -> Generator:
|
|
|
|
|
def _handle_chat_generate_stream_response(self, model: str, credentials: dict,
|
|
|
|
|
response: Stream[MessageStreamEvent],
|
|
|
|
|
prompt_messages: list[PromptMessage]) -> Generator:
|
|
|
|
|
"""
|
|
|
|
|
Handle llm stream response
|
|
|
|
|
Handle llm chat stream response
|
|
|
|
|
|
|
|
|
|
:param model: model name
|
|
|
|
|
:param credentials: credentials
|
|
|
|
|
:param response: response
|
|
|
|
|
:param prompt_messages: prompt messages
|
|
|
|
|
:return: llm response chunk generator result
|
|
|
|
|
:return: llm response chunk generator
|
|
|
|
|
"""
|
|
|
|
|
index = -1
|
|
|
|
|
full_assistant_content = ''
|
|
|
|
|
return_model = None
|
|
|
|
|
input_tokens = 0
|
|
|
|
|
output_tokens = 0
|
|
|
|
|
finish_reason = None
|
|
|
|
|
index = 0
|
|
|
|
|
for chunk in response:
|
|
|
|
|
content = chunk.completion
|
|
|
|
|
if chunk.stop_reason is None and (content is None or content == ''):
|
|
|
|
|
continue
|
|
|
|
|
|
|
|
|
|
# transform assistant message to prompt message
|
|
|
|
|
assistant_prompt_message = AssistantPromptMessage(
|
|
|
|
|
content=content if content else '',
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
index += 1
|
|
|
|
|
|
|
|
|
|
if chunk.stop_reason is not None:
|
|
|
|
|
# calculate num tokens
|
|
|
|
|
prompt_tokens = self.get_num_tokens(model, credentials, prompt_messages)
|
|
|
|
|
completion_tokens = self.get_num_tokens(model, credentials, [assistant_prompt_message])
|
|
|
|
|
|
|
|
|
|
if isinstance(chunk, MessageStartEvent):
|
|
|
|
|
return_model = chunk.message.model
|
|
|
|
|
input_tokens = chunk.message.usage.input_tokens
|
|
|
|
|
elif isinstance(chunk, MessageDeltaEvent):
|
|
|
|
|
output_tokens = chunk.usage.output_tokens
|
|
|
|
|
finish_reason = chunk.delta.stop_reason
|
|
|
|
|
elif isinstance(chunk, MessageStopEvent):
|
|
|
|
|
# transform usage
|
|
|
|
|
usage = self._calc_response_usage(model, credentials, prompt_tokens, completion_tokens)
|
|
|
|
|
usage = self._calc_response_usage(model, credentials, input_tokens, output_tokens)
|
|
|
|
|
|
|
|
|
|
yield LLMResultChunk(
|
|
|
|
|
model=chunk.model,
|
|
|
|
|
model=return_model,
|
|
|
|
|
prompt_messages=prompt_messages,
|
|
|
|
|
delta=LLMResultChunkDelta(
|
|
|
|
|
index=index,
|
|
|
|
|
message=assistant_prompt_message,
|
|
|
|
|
finish_reason=chunk.stop_reason,
|
|
|
|
|
index=index + 1,
|
|
|
|
|
message=AssistantPromptMessage(
|
|
|
|
|
content=''
|
|
|
|
|
),
|
|
|
|
|
finish_reason=finish_reason,
|
|
|
|
|
usage=usage
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
else:
|
|
|
|
|
elif isinstance(chunk, ContentBlockDeltaEvent):
|
|
|
|
|
chunk_text = chunk.delta.text if chunk.delta.text else ''
|
|
|
|
|
full_assistant_content += chunk_text
|
|
|
|
|
|
|
|
|
|
# transform assistant message to prompt message
|
|
|
|
|
assistant_prompt_message = AssistantPromptMessage(
|
|
|
|
|
content=chunk_text
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
index = chunk.index
|
|
|
|
|
|
|
|
|
|
yield LLMResultChunk(
|
|
|
|
|
model=chunk.model,
|
|
|
|
|
model=return_model,
|
|
|
|
|
prompt_messages=prompt_messages,
|
|
|
|
|
delta=LLMResultChunkDelta(
|
|
|
|
|
index=index,
|
|
|
|
|
message=assistant_prompt_message
|
|
|
|
|
index=chunk.index,
|
|
|
|
|
message=assistant_prompt_message,
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
@ -289,6 +337,80 @@ class AnthropicLargeLanguageModel(LargeLanguageModel):
|
|
|
|
|
|
|
|
|
|
return credentials_kwargs
|
|
|
|
|
|
|
|
|
|
def _convert_prompt_messages(self, prompt_messages: list[PromptMessage]) -> tuple[str, list[dict]]:
|
|
|
|
|
"""
|
|
|
|
|
Convert prompt messages to dict list and system
|
|
|
|
|
"""
|
|
|
|
|
system = ""
|
|
|
|
|
prompt_message_dicts = []
|
|
|
|
|
|
|
|
|
|
for message in prompt_messages:
|
|
|
|
|
if isinstance(message, SystemPromptMessage):
|
|
|
|
|
system += message.content + ("\n" if not system else "")
|
|
|
|
|
else:
|
|
|
|
|
prompt_message_dicts.append(self._convert_prompt_message_to_dict(message))
|
|
|
|
|
|
|
|
|
|
return system, prompt_message_dicts
|
|
|
|
|
|
|
|
|
|
def _convert_prompt_message_to_dict(self, message: PromptMessage) -> dict:
|
|
|
|
|
"""
|
|
|
|
|
Convert PromptMessage to dict
|
|
|
|
|
"""
|
|
|
|
|
if isinstance(message, UserPromptMessage):
|
|
|
|
|
message = cast(UserPromptMessage, message)
|
|
|
|
|
if isinstance(message.content, str):
|
|
|
|
|
message_dict = {"role": "user", "content": message.content}
|
|
|
|
|
else:
|
|
|
|
|
sub_messages = []
|
|
|
|
|
for message_content in message.content:
|
|
|
|
|
if message_content.type == PromptMessageContentType.TEXT:
|
|
|
|
|
message_content = cast(TextPromptMessageContent, message_content)
|
|
|
|
|
sub_message_dict = {
|
|
|
|
|
"type": "text",
|
|
|
|
|
"text": message_content.data
|
|
|
|
|
}
|
|
|
|
|
sub_messages.append(sub_message_dict)
|
|
|
|
|
elif message_content.type == PromptMessageContentType.IMAGE:
|
|
|
|
|
message_content = cast(ImagePromptMessageContent, message_content)
|
|
|
|
|
if not message_content.data.startswith("data:"):
|
|
|
|
|
# fetch image data from url
|
|
|
|
|
try:
|
|
|
|
|
image_content = requests.get(message_content.data).content
|
|
|
|
|
mime_type, _ = mimetypes.guess_type(message_content.data)
|
|
|
|
|
base64_data = base64.b64encode(image_content).decode('utf-8')
|
|
|
|
|
except Exception as ex:
|
|
|
|
|
raise ValueError(f"Failed to fetch image data from url {message_content.data}, {ex}")
|
|
|
|
|
else:
|
|
|
|
|
data_split = message_content.data.split(";base64,")
|
|
|
|
|
mime_type = data_split[0].replace("data:", "")
|
|
|
|
|
base64_data = data_split[1]
|
|
|
|
|
|
|
|
|
|
if mime_type not in ["image/jpeg", "image/png", "image/gif", "image/webp"]:
|
|
|
|
|
raise ValueError(f"Unsupported image type {mime_type}, "
|
|
|
|
|
f"only support image/jpeg, image/png, image/gif, and image/webp")
|
|
|
|
|
|
|
|
|
|
sub_message_dict = {
|
|
|
|
|
"type": "image",
|
|
|
|
|
"source": {
|
|
|
|
|
"type": "base64",
|
|
|
|
|
"media_type": mime_type,
|
|
|
|
|
"data": base64_data
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
sub_messages.append(sub_message_dict)
|
|
|
|
|
|
|
|
|
|
message_dict = {"role": "user", "content": sub_messages}
|
|
|
|
|
elif isinstance(message, AssistantPromptMessage):
|
|
|
|
|
message = cast(AssistantPromptMessage, message)
|
|
|
|
|
message_dict = {"role": "assistant", "content": message.content}
|
|
|
|
|
elif isinstance(message, SystemPromptMessage):
|
|
|
|
|
message = cast(SystemPromptMessage, message)
|
|
|
|
|
message_dict = {"role": "system", "content": message.content}
|
|
|
|
|
else:
|
|
|
|
|
raise ValueError(f"Got unknown type {message}")
|
|
|
|
|
|
|
|
|
|
return message_dict
|
|
|
|
|
|
|
|
|
|
def _convert_one_message_to_text(self, message: PromptMessage) -> str:
|
|
|
|
|
"""
|
|
|
|
|
Convert a single message to a string.
|
|
|
|
|
|