|
|
|
|
@ -329,16 +329,23 @@ def create_qdrant_indexes():
|
|
|
|
|
model_name=dataset.embedding_model
|
|
|
|
|
)
|
|
|
|
|
except Exception:
|
|
|
|
|
provider = Provider(
|
|
|
|
|
id='provider_id',
|
|
|
|
|
tenant_id=dataset.tenant_id,
|
|
|
|
|
provider_name='openai',
|
|
|
|
|
provider_type=ProviderType.CUSTOM.value,
|
|
|
|
|
encrypted_config=json.dumps({'openai_api_key': 'TEST'}),
|
|
|
|
|
is_valid=True,
|
|
|
|
|
)
|
|
|
|
|
model_provider = OpenAIProvider(provider=provider)
|
|
|
|
|
embedding_model = OpenAIEmbedding(name="text-embedding-ada-002", model_provider=model_provider)
|
|
|
|
|
try:
|
|
|
|
|
embedding_model = ModelFactory.get_embedding_model(
|
|
|
|
|
tenant_id=dataset.tenant_id
|
|
|
|
|
)
|
|
|
|
|
dataset.embedding_model = embedding_model.name
|
|
|
|
|
dataset.embedding_model_provider = embedding_model.model_provider.provider_name
|
|
|
|
|
except Exception:
|
|
|
|
|
provider = Provider(
|
|
|
|
|
id='provider_id',
|
|
|
|
|
tenant_id=dataset.tenant_id,
|
|
|
|
|
provider_name='openai',
|
|
|
|
|
provider_type=ProviderType.SYSTEM.value,
|
|
|
|
|
encrypted_config=json.dumps({'openai_api_key': 'TEST'}),
|
|
|
|
|
is_valid=True,
|
|
|
|
|
)
|
|
|
|
|
model_provider = OpenAIProvider(provider=provider)
|
|
|
|
|
embedding_model = OpenAIEmbedding(name="text-embedding-ada-002", model_provider=model_provider)
|
|
|
|
|
embeddings = CacheEmbedding(embedding_model)
|
|
|
|
|
|
|
|
|
|
from core.index.vector_index.qdrant_vector_index import QdrantVectorIndex, QdrantConfig
|
|
|
|
|
|