feat: implement InstructionGenerateApi

deploy/dev
stream 7 months ago
parent d6af356248
commit 807a6890ac

@ -114,6 +114,54 @@ class RuleStructuredOutputGenerateApi(Resource):
return structured_output
class InstructionGenerateApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self):
parser = reqparse.RequestParser()
parser.add_argument("flow_id", type=str, required=False, default="", location="json")
parser.add_argument("node_id", type=str, required=False, default="", location="json")
parser.add_argument("current", type=str, required=False, default="", location="json")
parser.add_argument("instruction", type=str, required=True, nullable=False, location="json")
parser.add_argument("model_config", type=dict, required=True, nullable=False, location="json")
args = parser.parse_args()
try:
if args["flow_id"] == "" or args["current"] == "": # Fallback for legacy endpoint
return LLMGenerator.generate_rule_config(
current_user.current_tenant_id,
instruction=args["instruction"],
model_config=args["model_config"],
no_variable=True
)
if args["node_id"] == "": # For legacy app without a workflow
return LLMGenerator.instruction_modify_legacy(
tenant_id=current_user.current_tenant_id,
flow_id=args["flow_id"],
current=args["current"],
instruction=args["instruction"],
model_config=args["model_config"],
)
return LLMGenerator.instruction_modify_workflow(
tenant_id=current_user.current_tenant_id,
flow_id=args["flow_id"],
node_id=args["node_id"],
current=args["current"],
instruction=args["instruction"],
model_config=args["model_config"],
)
except ProviderTokenNotInitError as ex:
raise ProviderNotInitializeError(ex.description)
except QuotaExceededError:
raise ProviderQuotaExceededError()
except ModelCurrentlyNotSupportError:
raise ProviderModelCurrentlyNotSupportError()
except InvokeError as e:
raise CompletionRequestError(e.description)
api.add_resource(RuleGenerateApi, "/rule-generate")
api.add_resource(RuleCodeGenerateApi, "/rule-code-generate")
api.add_resource(RuleStructuredOutputGenerateApi, "/rule-structured-output-generate")
api.add_resource(InstructionGenerateApi, "/instruction-generate")

@ -1,6 +1,7 @@
import json
import logging
import re
from collections.abc import Sequence
from typing import Optional, cast
import json_repair
@ -11,6 +12,8 @@ from core.llm_generator.prompts import (
CONVERSATION_TITLE_PROMPT,
GENERATOR_QA_PROMPT,
JAVASCRIPT_CODE_GENERATOR_PROMPT_TEMPLATE,
LLM_MODIFY_CODE_SYSTEM,
LLM_MODIFY_PROMPT_SYSTEM,
PYTHON_CODE_GENERATOR_PROMPT_TEMPLATE,
SYSTEM_STRUCTURED_OUTPUT_GENERATE,
WORKFLOW_RULE_CONFIG_PROMPT_GENERATE_TEMPLATE,
@ -24,6 +27,9 @@ from core.ops.entities.trace_entity import TraceTaskName
from core.ops.ops_trace_manager import TraceQueueManager, TraceTask
from core.ops.utils import measure_time
from core.prompt.utils.prompt_template_parser import PromptTemplateParser
from core.workflow.entities.workflow_node_execution import WorkflowNodeExecutionMetadataKey
from core.workflow.graph_engine.entities.event import AgentLogEvent
from models import App, Message, WorkflowNodeExecutionModel, db
class LLMGenerator:
@ -397,3 +403,169 @@ class LLMGenerator:
except Exception as e:
logging.exception(f"Failed to invoke LLM model, model: {model_config.get('name')}")
return {"output": "", "error": f"An unexpected error occurred: {str(e)}"}
@staticmethod
def instruction_modify_legacy(
tenant_id: str,
flow_id: str,
current: str,
instruction: str,
model_config: dict
) -> dict:
app: App = db.session.query(App).filter(App.id == flow_id).first()
last_run: Message = (db.session.query(Message)
.filter(Message.app_id == flow_id)
.order_by(Message.created_at.desc())
.first())
if not last_run:
return LLMGenerator.__instruction_modify_common(
tenant_id=tenant_id,
model_config=model_config,
last_run={ "error": "This hasn't been run" },
current=current,
error_message="",
instruction=instruction,
node_type="llm",
)
last_run_dict = {
"query": last_run.query,
"answer": last_run.answer,
"error": last_run.error,
}
return LLMGenerator.__instruction_modify_common(
tenant_id=tenant_id,
model_config=model_config,
last_run=last_run_dict,
current=current,
error_message=str(last_run.error),
instruction=instruction,
node_type="llm",
)
@staticmethod
def instruction_modify_workflow(
tenant_id: str,
flow_id: str,
node_id: str,
current: str,
instruction: str,
model_config: dict
) -> dict:
from services.workflow_service import WorkflowService
app: App = db.session.query(App).filter(App.id == flow_id).first()
workflow = WorkflowService().get_draft_workflow(app_model=app)
if not workflow:
raise ValueError("Workflow not found for the given app model.")
last_run = WorkflowService().get_node_last_run(
app_model=app,
workflow=workflow,
node_id=node_id
)
if not last_run: # Node is not executed yet
return LLMGenerator.__instruction_modify_common(
tenant_id=tenant_id,
model_config=model_config,
last_run={ "error": "This hasn't been run" },
current=current,
error_message="",
instruction=instruction,
node_type="llm",
)
def agent_log_of(node_execution: WorkflowNodeExecutionModel) -> Sequence:
raw_agent_log = node_execution.execution_metadata_dict.get(WorkflowNodeExecutionMetadataKey.AGENT_LOG)
if not raw_agent_log:
return []
parsed: Sequence[AgentLogEvent] = json.loads(raw_agent_log)
def dict_of_event(event: AgentLogEvent) -> dict:
return {
"status": event.status,
"error": event.error,
"data": event.data,
}
return json.dumps(map(dict_of_event, parsed))
last_run_dict = {
"inputs": last_run.inputs_dict,
"status": last_run.status,
"error": last_run.error,
"agent_log": agent_log_of(last_run)
}
return LLMGenerator.__instruction_modify_common(
tenant_id=tenant_id,
model_config=model_config,
last_run=last_run_dict,
current=current,
error_message=last_run.error,
instruction=instruction,
node_type=last_run.node_type,
)
@staticmethod
def __instruction_modify_common(
tenant_id: str,
model_config: dict,
last_run: dict,
current: str,
error_message: str,
instruction: str,
node_type: str,
) -> dict:
LAST_RUN = "{{#last_run#}}"
CURRENT = "{{#current#}}"
ERROR_MESSAGE = "{{#error_message#}}"
injected_instruction = instruction
if LAST_RUN in injected_instruction:
injected_instruction = injected_instruction.replace(LAST_RUN, json.dumps(last_run))
if CURRENT in injected_instruction:
injected_instruction = injected_instruction.replace(CURRENT, current)
if ERROR_MESSAGE in injected_instruction:
injected_instruction = injected_instruction.replace(ERROR_MESSAGE, error_message)
model_instance = ModelManager().get_model_instance(
tenant_id = tenant_id,
model_type=ModelType.LLM,
provider=model_config.get("provider", ""),
model=model_config.get("name", ""),
)
match node_type:
case "llm", "agent":
system_prompt = LLM_MODIFY_PROMPT_SYSTEM
case "code":
system_prompt = LLM_MODIFY_CODE_SYSTEM
case _:
system_prompt = LLM_MODIFY_PROMPT_SYSTEM
prompt_messages = [
SystemPromptMessage(content=system_prompt)
,UserPromptMessage(content=json.dumps(
{
"current": current,
"last_run": last_run,
"instruction": injected_instruction,
}
))
]
model_parameters = {"temperature": 0.4}
try:
response = cast(
LLMResult,
model_instance.invoke_llm(
prompt_messages=list(prompt_messages), model_parameters=model_parameters, stream=False
),
)
generated_raw = cast(str, response.message.content)
first_brace = generated_raw.find("{")
last_brace = generated_raw.rfind("}")
return json.loads(generated_raw[first_brace:last_brace+1])
except InvokeError as e:
error = str(e)
return {"error": f"Failed to generate code. Error: {error}"}
except Exception as e:
logging.exception(
f"Failed to invoke LLM model, model: {model_config.get('name')}"
)
return {"error": f"An unexpected error occurred: {str(e)}"}

@ -309,3 +309,99 @@ eg:
Here is the JSON schema:
{{schema}}
""" # noqa: E501
LLM_MODIFY_PROMPT_SYSTEM = """
Both your input and output should be in JSON format.
! Below is the schema for input content !
{
"type": "object",
"description": "The user is trying to process some content with a prompt, but the output is not as expected. They hope to achieve their goal by modifying the prompt.",
"properties": {
"current": {
"type": "string",
"description": "The prompt before modification, where placeholders {{}} will be replaced with actual values for the large language model. The content in the placeholders should not be changed."
},
"last_run": {
"type": "object",
"description": "The output result from the large language model after receiving the prompt.",
},
"instruction": {
"type": "string",
"description": "User's instruction to edit the current prompt"
}
}
}
! Above is the schema for input content !
! Below is the schema for output content !
{
"type": "object",
"description": "Your feedback to the user after they provide modification suggestions.",
"properties": {
"modified": {
"type": "string",
"description": "Your modified prompt. You should change the original prompt as little as possible to achieve the goal. Keep the language of prompt if not asked to change"
},
"message": {
"type": "string",
"description": "Your feedback to the user, in the user's language, explaining what you did and your thought process in text, providing sufficient emotional value to the user."
}
},
"required": [
"modified",
"message"
]
}
! Above is the schema for output content !
Your output must strictly follow the schema format, do not output any content outside of the JSON body.
""" # noqa: E501
LLM_MODIFY_CODE_SYSTEM = """
Both your input and output should be in JSON format.
! Below is the schema for input content !
{
"type": "object",
"description": "The user is trying to process some data with a code snippet, but the result is not as expected. They hope to achieve their goal by modifying the code.",
"properties": {
"current": {
"type": "string",
"description": "The code before modification."
},
"last_run": {
"type": "object",
"description": "The result of the code.",
},
"message": {
"type": "string",
"description": "User's instruction to edit the current code"
}
}
}
! Above is the schema for input content !
! Below is the schema for output content !
{
"type": "object",
"description": "Your feedback to the user after they provide modification suggestions.",
"properties": {
"modified": {
"type": "string",
"description": "Your modified code. You should change the original code as little as possible to achieve the goal. Keep the programming language of code if not asked to change"
},
"message": {
"type": "string",
"description": "Your feedback to the user, in the user's language, explaining what you did and your thought process in text, providing sufficient emotional value to the user."
}
},
"required": [
"modified",
"message"
]
}
! Above is the schema for output content !
Your output must strictly follow the schema format, do not output any content outside of the JSON body.
""" # noqa: E501

Loading…
Cancel
Save