|
|
|
|
@ -22,6 +22,7 @@ from core.rag.datasource.keyword.jieba.jieba_keyword_table_handler import JiebaK
|
|
|
|
|
from core.rag.datasource.retrieval_service import RetrievalService
|
|
|
|
|
from core.rag.entities.context_entities import DocumentContext
|
|
|
|
|
from core.rag.models.document import Document
|
|
|
|
|
from core.rag.rerank.rerank_type import RerankMode
|
|
|
|
|
from core.rag.retrieval.retrieval_methods import RetrievalMethod
|
|
|
|
|
from core.rag.retrieval.router.multi_dataset_function_call_router import FunctionCallMultiDatasetRouter
|
|
|
|
|
from core.rag.retrieval.router.multi_dataset_react_route import ReactMultiDatasetRouter
|
|
|
|
|
@ -361,10 +362,39 @@ class DatasetRetrieval:
|
|
|
|
|
reranking_enable: bool = True,
|
|
|
|
|
message_id: Optional[str] = None,
|
|
|
|
|
):
|
|
|
|
|
if not available_datasets:
|
|
|
|
|
return []
|
|
|
|
|
threads = []
|
|
|
|
|
all_documents = []
|
|
|
|
|
dataset_ids = [dataset.id for dataset in available_datasets]
|
|
|
|
|
index_type = None
|
|
|
|
|
index_type_check = all(
|
|
|
|
|
item.indexing_technique == available_datasets[0].indexing_technique for item in available_datasets
|
|
|
|
|
)
|
|
|
|
|
if not index_type_check and (not reranking_enable or reranking_mode != RerankMode.RERANKING_MODEL):
|
|
|
|
|
raise ValueError(
|
|
|
|
|
"The configured knowledge base list have different indexing technique, please set reranking model."
|
|
|
|
|
)
|
|
|
|
|
index_type = available_datasets[0].indexing_technique
|
|
|
|
|
if index_type == "high_quality":
|
|
|
|
|
embedding_model_check = all(
|
|
|
|
|
item.embedding_model == available_datasets[0].embedding_model for item in available_datasets
|
|
|
|
|
)
|
|
|
|
|
embedding_model_provider_check = all(
|
|
|
|
|
item.embedding_model_provider == available_datasets[0].embedding_model_provider
|
|
|
|
|
for item in available_datasets
|
|
|
|
|
)
|
|
|
|
|
if (
|
|
|
|
|
reranking_enable
|
|
|
|
|
and reranking_mode == "weighted_score"
|
|
|
|
|
and (not embedding_model_check or not embedding_model_provider_check)
|
|
|
|
|
):
|
|
|
|
|
raise ValueError(
|
|
|
|
|
"The configured knowledge base list have different embedding model, please set reranking model."
|
|
|
|
|
)
|
|
|
|
|
if reranking_enable and reranking_mode == RerankMode.WEIGHTED_SCORE:
|
|
|
|
|
weights["vector_setting"]["embedding_provider_name"] = available_datasets[0].embedding_model_provider
|
|
|
|
|
weights["vector_setting"]["embedding_model_name"] = available_datasets[0].embedding_model
|
|
|
|
|
|
|
|
|
|
for dataset in available_datasets:
|
|
|
|
|
index_type = dataset.indexing_technique
|
|
|
|
|
retrieval_thread = threading.Thread(
|
|
|
|
|
|