diff --git a/.gitignore b/.gitignore index dd4673a3d2..474771567c 100644 --- a/.gitignore +++ b/.gitignore @@ -215,3 +215,7 @@ mise.toml # AI Assistant .roo/ api/.env.backup + +# Clickzetta test credentials +.env.clickzetta +.env.clickzetta.test diff --git a/api/configs/middleware/__init__.py b/api/configs/middleware/__init__.py index 0c0c06dd46..c5d4d3faa3 100644 --- a/api/configs/middleware/__init__.py +++ b/api/configs/middleware/__init__.py @@ -20,6 +20,7 @@ from .storage.volcengine_tos_storage_config import VolcengineTOSStorageConfig from .vdb.analyticdb_config import AnalyticdbConfig from .vdb.baidu_vector_config import BaiduVectorDBConfig from .vdb.chroma_config import ChromaConfig +from .vdb.clickzetta_config import ClickzettaConfig from .vdb.couchbase_config import CouchbaseConfig from .vdb.elasticsearch_config import ElasticsearchConfig from .vdb.huawei_cloud_config import HuaweiCloudConfig @@ -309,6 +310,7 @@ class MiddlewareConfig( VectorStoreConfig, AnalyticdbConfig, ChromaConfig, + ClickzettaConfig, HuaweiCloudConfig, MilvusConfig, MyScaleConfig, diff --git a/api/configs/middleware/vdb/clickzetta_config.py b/api/configs/middleware/vdb/clickzetta_config.py new file mode 100644 index 0000000000..a2822dbfee --- /dev/null +++ b/api/configs/middleware/vdb/clickzetta_config.py @@ -0,0 +1,69 @@ +from typing import Optional + +from pydantic import BaseModel, Field + + +class ClickzettaConfig(BaseModel): + """ + Clickzetta Lakehouse vector database configuration + """ + + CLICKZETTA_USERNAME: Optional[str] = Field( + description="Username for authenticating with Clickzetta Lakehouse", + default=None, + ) + + CLICKZETTA_PASSWORD: Optional[str] = Field( + description="Password for authenticating with Clickzetta Lakehouse", + default=None, + ) + + CLICKZETTA_INSTANCE: Optional[str] = Field( + description="Clickzetta Lakehouse instance ID", + default=None, + ) + + CLICKZETTA_SERVICE: Optional[str] = Field( + description="Clickzetta API service endpoint (e.g., 'api.clickzetta.com')", + default="api.clickzetta.com", + ) + + CLICKZETTA_WORKSPACE: Optional[str] = Field( + description="Clickzetta workspace name", + default="default", + ) + + CLICKZETTA_VCLUSTER: Optional[str] = Field( + description="Clickzetta virtual cluster name", + default="default_ap", + ) + + CLICKZETTA_SCHEMA: Optional[str] = Field( + description="Database schema name in Clickzetta", + default="public", + ) + + CLICKZETTA_BATCH_SIZE: Optional[int] = Field( + description="Batch size for bulk insert operations", + default=100, + ) + + CLICKZETTA_ENABLE_INVERTED_INDEX: Optional[bool] = Field( + description="Enable inverted index for full-text search capabilities", + default=True, + ) + + CLICKZETTA_ANALYZER_TYPE: Optional[str] = Field( + description="Analyzer type for full-text search: keyword, english, chinese, unicode", + default="chinese", + ) + + CLICKZETTA_ANALYZER_MODE: Optional[str] = Field( + description="Analyzer mode for tokenization: max_word (fine-grained) or smart (intelligent)", + default="smart", + ) + + CLICKZETTA_VECTOR_DISTANCE_FUNCTION: Optional[str] = Field( + description="Distance function for vector similarity: l2_distance or cosine_distance", + default="cosine_distance", + ) \ No newline at end of file diff --git a/api/controllers/console/datasets/datasets.py b/api/controllers/console/datasets/datasets.py index 1611214cb3..a2b08f8519 100644 --- a/api/controllers/console/datasets/datasets.py +++ b/api/controllers/console/datasets/datasets.py @@ -687,6 +687,7 @@ class DatasetRetrievalSettingApi(Resource): | VectorType.HUAWEI_CLOUD | VectorType.TENCENT | VectorType.MATRIXONE + | VectorType.CLICKZETTA ): return { "retrieval_method": [ @@ -735,6 +736,7 @@ class DatasetRetrievalSettingMockApi(Resource): | VectorType.TENCENT | VectorType.HUAWEI_CLOUD | VectorType.MATRIXONE + | VectorType.CLICKZETTA ): return { "retrieval_method": [ diff --git a/api/core/rag/datasource/vdb/clickzetta/README.md b/api/core/rag/datasource/vdb/clickzetta/README.md new file mode 100644 index 0000000000..7c8ec85a27 --- /dev/null +++ b/api/core/rag/datasource/vdb/clickzetta/README.md @@ -0,0 +1,190 @@ +# Clickzetta Vector Database Integration + +This module provides integration with Clickzetta Lakehouse as a vector database for Dify. + +## Features + +- **Vector Storage**: Store and retrieve high-dimensional vectors using Clickzetta's native VECTOR type +- **Vector Search**: Efficient similarity search using HNSW algorithm +- **Full-Text Search**: Leverage Clickzetta's inverted index for powerful text search capabilities +- **Hybrid Search**: Combine vector similarity and full-text search for better results +- **Multi-language Support**: Built-in support for Chinese, English, and Unicode text processing +- **Scalable**: Leverage Clickzetta's distributed architecture for large-scale deployments + +## Configuration + +### Required Environment Variables + +All seven configuration parameters are required: + +```bash +# Authentication +CLICKZETTA_USERNAME=your_username +CLICKZETTA_PASSWORD=your_password + +# Instance configuration +CLICKZETTA_INSTANCE=your_instance_id +CLICKZETTA_SERVICE=api.clickzetta.com +CLICKZETTA_WORKSPACE=your_workspace +CLICKZETTA_VCLUSTER=your_vcluster +CLICKZETTA_SCHEMA=your_schema +``` + +### Optional Configuration + +```bash +# Batch processing +CLICKZETTA_BATCH_SIZE=100 + +# Full-text search configuration +CLICKZETTA_ENABLE_INVERTED_INDEX=true +CLICKZETTA_ANALYZER_TYPE=chinese # Options: keyword, english, chinese, unicode +CLICKZETTA_ANALYZER_MODE=smart # Options: max_word, smart + +# Vector search configuration +CLICKZETTA_VECTOR_DISTANCE_FUNCTION=cosine_distance # Options: l2_distance, cosine_distance +``` + +## Usage + +### 1. Set Clickzetta as the Vector Store + +In your Dify configuration, set: + +```bash +VECTOR_STORE=clickzetta +``` + +### 2. Table Structure + +Clickzetta will automatically create tables with the following structure: + +```sql +CREATE TABLE ( + id STRING NOT NULL, + content STRING NOT NULL, + metadata JSON, + vector VECTOR(FLOAT, ) NOT NULL, + PRIMARY KEY (id) +); + +-- Vector index for similarity search +CREATE VECTOR INDEX idx__vec +ON TABLE .(vector) +PROPERTIES ( + "distance.function" = "cosine_distance", + "scalar.type" = "f32" +); + +-- Inverted index for full-text search (if enabled) +CREATE INVERTED INDEX idx__text +ON .(content) +PROPERTIES ( + "analyzer" = "chinese", + "mode" = "smart" +); +``` + +## Full-Text Search Capabilities + +Clickzetta supports advanced full-text search with multiple analyzers: + +### Analyzer Types + +1. **keyword**: No tokenization, treats the entire string as a single token + - Best for: Exact matching, IDs, codes + +2. **english**: Designed for English text + - Features: Recognizes ASCII letters and numbers, converts to lowercase + - Best for: English content + +3. **chinese**: Chinese text tokenizer + - Features: Recognizes Chinese and English characters, removes punctuation + - Best for: Chinese or mixed Chinese-English content + +4. **unicode**: Multi-language tokenizer based on Unicode + - Features: Recognizes text boundaries in multiple languages + - Best for: Multi-language content + +### Analyzer Modes + +- **max_word**: Fine-grained tokenization (more tokens) +- **smart**: Intelligent tokenization (balanced) + +### Full-Text Search Functions + +- `MATCH_ALL(column, query)`: All terms must be present +- `MATCH_ANY(column, query)`: At least one term must be present +- `MATCH_PHRASE(column, query)`: Exact phrase matching +- `MATCH_PHRASE_PREFIX(column, query)`: Phrase prefix matching +- `MATCH_REGEXP(column, pattern)`: Regular expression matching + +## Performance Optimization + +### Vector Search + +1. **Adjust exploration factor** for accuracy vs speed trade-off: + ```sql + SET cz.vector.index.search.ef=64; + ``` + +2. **Use appropriate distance functions**: + - `cosine_distance`: Best for normalized embeddings (e.g., from language models) + - `l2_distance`: Best for raw feature vectors + +### Full-Text Search + +1. **Choose the right analyzer**: + - Use `keyword` for exact matching + - Use language-specific analyzers for better tokenization + +2. **Combine with vector search**: + - Pre-filter with full-text search for better performance + - Use hybrid search for improved relevance + +## Troubleshooting + +### Connection Issues + +1. Verify all 7 required configuration parameters are set +2. Check network connectivity to Clickzetta service +3. Ensure the user has proper permissions on the schema + +### Search Performance + +1. Verify vector index exists: + ```sql + SHOW INDEX FROM .; + ``` + +2. Check if vector index is being used: + ```sql + EXPLAIN SELECT ... WHERE l2_distance(...) < threshold; + ``` + Look for `vector_index_search_type` in the execution plan. + +### Full-Text Search Not Working + +1. Verify inverted index is created +2. Check analyzer configuration matches your content language +3. Use `TOKENIZE()` function to test tokenization: + ```sql + SELECT TOKENIZE('your text', map('analyzer', 'chinese', 'mode', 'smart')); + ``` + +## Limitations + +1. Vector operations don't support `ORDER BY` or `GROUP BY` directly on vector columns +2. Full-text search relevance scores are not provided by Clickzetta +3. Inverted index creation may fail for very large existing tables (continue without error) +4. Index naming constraints: + - Index names must be unique within a schema + - Only one vector index can be created per column + - The implementation uses timestamps to ensure unique index names +5. A column can only have one vector index at a time + +## References + +- [Clickzetta Vector Search Documentation](../../../../../../../yunqidoc/cn_markdown_20250526/vector-search.md) +- [Clickzetta Inverted Index Documentation](../../../../../../../yunqidoc/cn_markdown_20250526/inverted-index.md) +- [Clickzetta SQL Functions](../../../../../../../yunqidoc/cn_markdown_20250526/sql_functions/) \ No newline at end of file diff --git a/api/core/rag/datasource/vdb/clickzetta/__init__.py b/api/core/rag/datasource/vdb/clickzetta/__init__.py new file mode 100644 index 0000000000..fecadb863a --- /dev/null +++ b/api/core/rag/datasource/vdb/clickzetta/__init__.py @@ -0,0 +1 @@ +# Clickzetta Vector Database Integration for Dify \ No newline at end of file diff --git a/api/core/rag/datasource/vdb/clickzetta/clickzetta_vector.py b/api/core/rag/datasource/vdb/clickzetta/clickzetta_vector.py new file mode 100644 index 0000000000..bb98a4a4c8 --- /dev/null +++ b/api/core/rag/datasource/vdb/clickzetta/clickzetta_vector.py @@ -0,0 +1,543 @@ +import json +import logging +import queue +import threading +import time +import uuid +from typing import Any, Optional + +import clickzetta # type: ignore +from pydantic import BaseModel, model_validator + +from configs import dify_config +from core.rag.datasource.vdb.field import Field +from core.rag.datasource.vdb.vector_base import BaseVector +from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory +from core.rag.datasource.vdb.vector_type import VectorType +from core.rag.embedding.embedding_base import Embeddings +from core.rag.models.document import Document +from models.dataset import Dataset + +logger = logging.getLogger(__name__) + + +class ClickzettaConfig(BaseModel): + """ + Configuration class for Clickzetta connection. + """ + + username: str + password: str + instance: str + service: str = "api.clickzetta.com" + workspace: str = "quick_start" + vcluster: str = "default_ap" + schema: str = "dify" + # Advanced settings + batch_size: int = 100 + enable_inverted_index: bool = True # Enable inverted index for full-text search + analyzer_type: str = "chinese" # Analyzer type for full-text search: keyword, english, chinese, unicode + analyzer_mode: str = "smart" # Analyzer mode: max_word, smart + vector_distance_function: str = "cosine_distance" # l2_distance or cosine_distance + + @model_validator(mode="before") + @classmethod + def validate_config(cls, values: dict) -> dict: + """ + Validate the configuration values. + """ + if not values.get("username"): + raise ValueError("config CLICKZETTA_USERNAME is required") + if not values.get("password"): + raise ValueError("config CLICKZETTA_PASSWORD is required") + if not values.get("instance"): + raise ValueError("config CLICKZETTA_INSTANCE is required") + if not values.get("service"): + raise ValueError("config CLICKZETTA_SERVICE is required") + if not values.get("workspace"): + raise ValueError("config CLICKZETTA_WORKSPACE is required") + if not values.get("vcluster"): + raise ValueError("config CLICKZETTA_VCLUSTER is required") + if not values.get("schema"): + raise ValueError("config CLICKZETTA_SCHEMA is required") + return values + + +class ClickzettaVector(BaseVector): + """ + Clickzetta vector storage implementation. + """ + + # Class-level write queue and lock for serializing writes + _write_queue: Optional[queue.Queue] = None + _write_thread: Optional[threading.Thread] = None + _write_lock = threading.Lock() + _shutdown = False + + def __init__(self, collection_name: str, config: ClickzettaConfig): + super().__init__(collection_name) + self._config = config + self._table_name = collection_name.replace("-", "_").lower() # Ensure valid table name + self._connection = None + self._init_connection() + self._init_write_queue() + + def _init_connection(self): + """Initialize Clickzetta connection.""" + self._connection = clickzetta.connect( + username=self._config.username, + password=self._config.password, + instance=self._config.instance, + service=self._config.service, + workspace=self._config.workspace, + vcluster=self._config.vcluster, + schema=self._config.schema + ) + + @classmethod + def _init_write_queue(cls): + """Initialize the write queue and worker thread.""" + with cls._write_lock: + if cls._write_queue is None: + cls._write_queue = queue.Queue() + cls._write_thread = threading.Thread(target=cls._write_worker, daemon=True) + cls._write_thread.start() + logger.info("Started Clickzetta write worker thread") + + @classmethod + def _write_worker(cls): + """Worker thread that processes write tasks sequentially.""" + while not cls._shutdown: + try: + # Get task from queue with timeout + task = cls._write_queue.get(timeout=1) + if task is None: # Shutdown signal + break + + # Execute the write task + func, args, kwargs, result_queue = task + try: + result = func(*args, **kwargs) + result_queue.put((True, result)) + except Exception as e: + logger.error(f"Write task failed: {e}") + result_queue.put((False, e)) + finally: + cls._write_queue.task_done() + except queue.Empty: + continue + except Exception as e: + logger.error(f"Write worker error: {e}") + + def _execute_write(self, func, *args, **kwargs): + """Execute a write operation through the queue.""" + if ClickzettaVector._write_queue is None: + raise RuntimeError("Write queue not initialized") + + result_queue = queue.Queue() + ClickzettaVector._write_queue.put((func, args, kwargs, result_queue)) + + # Wait for result + success, result = result_queue.get() + if not success: + raise result + return result + + def get_type(self) -> str: + """Return the vector database type.""" + return "clickzetta" + + def _table_exists(self) -> bool: + """Check if the table exists.""" + try: + with self._connection.cursor() as cursor: + cursor.execute(f"DESC {self._config.schema}.{self._table_name}") + return True + except Exception as e: + if "table or view not found" in str(e).lower(): + return False + else: + # Re-raise if it's a different error + raise + + def create(self, texts: list[Document], embeddings: list[list[float]], **kwargs): + """Create the collection and add initial documents.""" + # Execute table creation through write queue to avoid concurrent conflicts + self._execute_write(self._create_table_and_indexes, embeddings) + + # Add initial texts + if texts: + self.add_texts(texts, embeddings, **kwargs) + + def _create_table_and_indexes(self, embeddings: list[list[float]]): + """Create table and indexes (executed in write worker thread).""" + # Create table with vector and metadata columns + dimension = len(embeddings[0]) if embeddings else 768 + + create_table_sql = f""" + CREATE TABLE IF NOT EXISTS {self._config.schema}.{self._table_name} ( + id STRING NOT NULL, + {Field.CONTENT_KEY.value} STRING NOT NULL, + {Field.METADATA_KEY.value} JSON, + {Field.VECTOR.value} VECTOR(FLOAT, {dimension}) NOT NULL, + PRIMARY KEY (id) + ) + """ + + with self._connection.cursor() as cursor: + cursor.execute(create_table_sql) + + # Create vector index + self._create_vector_index(cursor) + + # Create inverted index for full-text search if enabled + if self._config.enable_inverted_index: + self._create_inverted_index(cursor) + + def _create_vector_index(self, cursor): + """Create HNSW vector index for similarity search.""" + # Use a fixed index name based on table and column name + index_name = f"idx_{self._table_name}_vector" + + # First check if an index already exists on this column + try: + cursor.execute(f"SHOW INDEX FROM {self._config.schema}.{self._table_name}") + existing_indexes = cursor.fetchall() + for idx in existing_indexes: + # Check if vector index already exists on the embedding column + if Field.VECTOR.value in str(idx).lower(): + logger.info(f"Vector index already exists on column {Field.VECTOR.value}") + return + except Exception as e: + logger.warning(f"Failed to check existing indexes: {e}") + + index_sql = f""" + CREATE VECTOR INDEX IF NOT EXISTS {index_name} + ON TABLE {self._config.schema}.{self._table_name}({Field.VECTOR.value}) + PROPERTIES ( + "distance.function" = "{self._config.vector_distance_function}", + "scalar.type" = "f32", + "m" = "16", + "ef.construction" = "128" + ) + """ + try: + cursor.execute(index_sql) + logger.info(f"Created vector index: {index_name}") + except Exception as e: + error_msg = str(e).lower() + if ("already exists" in error_msg or + "already has index" in error_msg or + "with the same type" in error_msg): + logger.info(f"Vector index already exists: {e}") + else: + logger.error(f"Failed to create vector index: {e}") + raise + + def _create_inverted_index(self, cursor): + """Create inverted index for full-text search.""" + # Use a fixed index name based on table name to avoid duplicates + index_name = f"idx_{self._table_name}_text" + + # Check if an inverted index already exists on this column + try: + cursor.execute(f"SHOW INDEX FROM {self._config.schema}.{self._table_name}") + existing_indexes = cursor.fetchall() + for idx in existing_indexes: + # Check if inverted index already exists on the content column + if Field.CONTENT_KEY.value in str(idx).lower() and "inverted" in str(idx).lower(): + logger.info(f"Inverted index already exists on column {Field.CONTENT_KEY.value}") + return + except Exception as e: + logger.warning(f"Failed to check existing indexes: {e}") + + index_sql = f""" + CREATE INVERTED INDEX IF NOT EXISTS {index_name} + ON TABLE {self._config.schema}.{self._table_name} ({Field.CONTENT_KEY.value}) + PROPERTIES ( + "analyzer" = "{self._config.analyzer_type}", + "mode" = "{self._config.analyzer_mode}" + ) + """ + try: + cursor.execute(index_sql) + logger.info(f"Created inverted index: {index_name}") + except Exception as e: + error_msg = str(e).lower() + if ("already exists" in error_msg or + "already has index" in error_msg or + "with the same type" in error_msg): + logger.info(f"Inverted index already exists on column {Field.CONTENT_KEY.value}") + else: + logger.warning(f"Failed to create inverted index: {e}") + # Continue without inverted index - full-text search will fall back to LIKE + + def _table_exists(self) -> bool: + """Check if the table exists.""" + with self._connection.cursor() as cursor: + cursor.execute(f"SHOW TABLES IN {self._config.schema} LIKE '{self._table_name}'") + return len(cursor.fetchall()) > 0 + + def add_texts(self, documents: list[Document], embeddings: list[list[float]], **kwargs): + """Add documents with embeddings to the collection.""" + if not documents: + return + + batch_size = self._config.batch_size + total_batches = (len(documents) + batch_size - 1) // batch_size + + for i in range(0, len(documents), batch_size): + batch_docs = documents[i:i + batch_size] + batch_embeddings = embeddings[i:i + batch_size] + + # Execute batch insert through write queue + self._execute_write(self._insert_batch, batch_docs, batch_embeddings, i, batch_size, total_batches) + + def _insert_batch(self, batch_docs: list[Document], batch_embeddings: list[list[float]], + batch_index: int, batch_size: int, total_batches: int): + """Insert a batch of documents (executed in write worker thread).""" + # Prepare batch insert + values = [] + for doc, embedding in zip(batch_docs, batch_embeddings): + doc_id = doc.metadata.get("doc_id", str(uuid.uuid4())) + # For JSON column in Clickzetta, use JSON 'json_string' format + metadata_json = json.dumps(doc.metadata).replace("'", "''") # Escape single quotes + embedding_str = f"VECTOR({','.join(map(str, embedding))})" + values.append(f"('{doc_id}', '{self._escape_string(doc.page_content)}', " + f"JSON '{metadata_json}', {embedding_str})") + + # Use regular INSERT - primary key will handle duplicates + insert_sql = f""" + INSERT INTO {self._config.schema}.{self._table_name} + (id, {Field.CONTENT_KEY.value}, {Field.METADATA_KEY.value}, {Field.VECTOR.value}) + VALUES {','.join(values)} + """ + + with self._connection.cursor() as cursor: + cursor.execute(insert_sql) + logger.info(f"Inserted batch {batch_index // batch_size + 1}/{total_batches}") + + def text_exists(self, id: str) -> bool: + """Check if a document exists by ID.""" + with self._connection.cursor() as cursor: + cursor.execute( + f"SELECT COUNT(*) FROM {self._config.schema}.{self._table_name} WHERE id = '{id}'" + ) + result = cursor.fetchone() + return result[0] > 0 if result else False + + def delete_by_ids(self, ids: list[str]) -> None: + """Delete documents by IDs.""" + if not ids: + return + + # Check if table exists before attempting delete + if not self._table_exists(): + logger.warning(f"Table {self._config.schema}.{self._table_name} does not exist, skipping delete") + return + + # Execute delete through write queue + self._execute_write(self._delete_by_ids_impl, ids) + + def _delete_by_ids_impl(self, ids: list[str]) -> None: + """Implementation of delete by IDs (executed in write worker thread).""" + ids_str = ",".join(f"'{id}'" for id in ids) + with self._connection.cursor() as cursor: + cursor.execute( + f"DELETE FROM {self._config.schema}.{self._table_name} WHERE id IN ({ids_str})" + ) + + def delete_by_metadata_field(self, key: str, value: str) -> None: + """Delete documents by metadata field.""" + # Check if table exists before attempting delete + if not self._table_exists(): + logger.warning(f"Table {self._config.schema}.{self._table_name} does not exist, skipping delete") + return + + # Execute delete through write queue + self._execute_write(self._delete_by_metadata_field_impl, key, value) + + def _delete_by_metadata_field_impl(self, key: str, value: str) -> None: + """Implementation of delete by metadata field (executed in write worker thread).""" + with self._connection.cursor() as cursor: + # Using JSON path to filter + cursor.execute( + f"DELETE FROM {self._config.schema}.{self._table_name} " + f"WHERE {Field.METADATA_KEY.value}->>'$.{key}' = '{value}'" + ) + + def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]: + """Search for documents by vector similarity.""" + top_k = kwargs.get("top_k", 10) + score_threshold = kwargs.get("score_threshold", 0.0) + document_ids_filter = kwargs.get("document_ids_filter") + + # Build filter clause + filter_clauses = [] + if document_ids_filter: + doc_ids_str = ",".join(f"'{id}'" for id in document_ids_filter) + filter_clauses.append(f"{Field.METADATA_KEY.value}->>'$.document_id' IN ({doc_ids_str})") + + # Add distance threshold based on distance function + if self._config.vector_distance_function == "cosine_distance": + # For cosine distance, smaller is better (0 = identical, 2 = opposite) + distance_func = "COSINE_DISTANCE" + if score_threshold > 0: + filter_clauses.append(f"{distance_func}({Field.VECTOR.value}, " + f"VECTOR({','.join(map(str, query_vector))})) < {2 - score_threshold}") + else: + # For L2 distance, smaller is better + distance_func = "L2_DISTANCE" + if score_threshold > 0: + filter_clauses.append(f"{distance_func}({Field.VECTOR.value}, " + f"VECTOR({','.join(map(str, query_vector))})) < {score_threshold}") + + where_clause = " AND ".join(filter_clauses) if filter_clauses else "1=1" + + # Execute vector search query + search_sql = f""" + SELECT id, {Field.CONTENT_KEY.value}, {Field.METADATA_KEY.value}, + {distance_func}({Field.VECTOR.value}, VECTOR({','.join(map(str, query_vector))})) AS distance + FROM {self._config.schema}.{self._table_name} + WHERE {where_clause} + ORDER BY distance + LIMIT {top_k} + """ + + documents = [] + with self._connection.cursor() as cursor: + cursor.execute(search_sql) + results = cursor.fetchall() + + for row in results: + metadata = json.loads(row[2]) if row[2] else {} + # Convert distance to score (inverse for better intuition) + if self._config.vector_distance_function == "cosine_distance": + # Cosine distance to similarity: 1 - (distance / 2) + metadata["score"] = 1 - (row[3] / 2) + else: + # L2 distance to score (arbitrary conversion) + metadata["score"] = 1 / (1 + row[3]) + + doc = Document(page_content=row[1], metadata=metadata) + documents.append(doc) + + return documents + + def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]: + """Search for documents using full-text search with inverted index.""" + if not self._config.enable_inverted_index: + logger.warning("Full-text search is not enabled. Enable inverted index in config.") + return [] + + top_k = kwargs.get("top_k", 10) + document_ids_filter = kwargs.get("document_ids_filter") + + # Build filter clause + filter_clauses = [] + if document_ids_filter: + doc_ids_str = ",".join(f"'{id}'" for id in document_ids_filter) + filter_clauses.append(f"{Field.METADATA_KEY.value}->>'$.document_id' IN ({doc_ids_str})") + + # Use match_all function for full-text search + # match_all requires all terms to be present + filter_clauses.append(f"MATCH_ALL({Field.CONTENT_KEY.value}, '{self._escape_string(query)}')") + + where_clause = " AND ".join(filter_clauses) + + # Execute full-text search query + search_sql = f""" + SELECT id, {Field.CONTENT_KEY.value}, {Field.METADATA_KEY.value} + FROM {self._config.schema}.{self._table_name} + WHERE {where_clause} + LIMIT {top_k} + """ + + documents = [] + with self._connection.cursor() as cursor: + try: + cursor.execute(search_sql) + results = cursor.fetchall() + + for row in results: + metadata = json.loads(row[2]) if row[2] else {} + # Add a relevance score for full-text search + metadata["score"] = 1.0 # Clickzetta doesn't provide relevance scores + doc = Document(page_content=row[1], metadata=metadata) + documents.append(doc) + except Exception as e: + logger.error(f"Full-text search failed: {e}") + # Fallback to LIKE search if full-text search fails + return self._search_by_like(query, **kwargs) + + return documents + + def _search_by_like(self, query: str, **kwargs: Any) -> list[Document]: + """Fallback search using LIKE operator.""" + top_k = kwargs.get("top_k", 10) + document_ids_filter = kwargs.get("document_ids_filter") + + # Build filter clause + filter_clauses = [] + if document_ids_filter: + doc_ids_str = ",".join(f"'{id}'" for id in document_ids_filter) + filter_clauses.append(f"{Field.METADATA_KEY.value}->>'$.document_id' IN ({doc_ids_str})") + + filter_clauses.append(f"{Field.CONTENT_KEY.value} LIKE '%{self._escape_string(query)}%'") + where_clause = " AND ".join(filter_clauses) + + search_sql = f""" + SELECT id, {Field.CONTENT_KEY.value}, {Field.METADATA_KEY.value} + FROM {self._config.schema}.{self._table_name} + WHERE {where_clause} + LIMIT {top_k} + """ + + documents = [] + with self._connection.cursor() as cursor: + cursor.execute(search_sql) + results = cursor.fetchall() + + for row in results: + metadata = json.loads(row[2]) if row[2] else {} + metadata["score"] = 0.5 # Lower score for LIKE search + doc = Document(page_content=row[1], metadata=metadata) + documents.append(doc) + + return documents + + def delete(self) -> None: + """Delete the entire collection.""" + with self._connection.cursor() as cursor: + cursor.execute(f"DROP TABLE IF EXISTS {self._config.schema}.{self._table_name}") + + def _escape_string(self, s: str) -> str: + """Escape single quotes in strings for SQL.""" + return s.replace("'", "''") + + +class ClickzettaVectorFactory(AbstractVectorFactory): + """Factory for creating Clickzetta vector instances.""" + + def init_vector(self, dataset: Dataset, attributes: list, embeddings: Embeddings) -> BaseVector: + """Initialize a Clickzetta vector instance.""" + # Get configuration from environment variables or dataset config + config = ClickzettaConfig( + username=dify_config.CLICKZETTA_USERNAME, + password=dify_config.CLICKZETTA_PASSWORD, + instance=dify_config.CLICKZETTA_INSTANCE, + service=dify_config.CLICKZETTA_SERVICE, + workspace=dify_config.CLICKZETTA_WORKSPACE, + vcluster=dify_config.CLICKZETTA_VCLUSTER, + schema=dify_config.CLICKZETTA_SCHEMA, + batch_size=dify_config.CLICKZETTA_BATCH_SIZE or 100, + enable_inverted_index=dify_config.CLICKZETTA_ENABLE_INVERTED_INDEX or True, + analyzer_type=dify_config.CLICKZETTA_ANALYZER_TYPE or "chinese", + analyzer_mode=dify_config.CLICKZETTA_ANALYZER_MODE or "smart", + vector_distance_function=dify_config.CLICKZETTA_VECTOR_DISTANCE_FUNCTION or "cosine_distance", + ) + + # Use dataset collection name as table name + collection_name = Dataset.gen_collection_name_by_id(dataset.id).lower() + + return ClickzettaVector(collection_name=collection_name, config=config) diff --git a/api/core/rag/datasource/vdb/vector_factory.py b/api/core/rag/datasource/vdb/vector_factory.py index 00080b0fae..687496eb97 100644 --- a/api/core/rag/datasource/vdb/vector_factory.py +++ b/api/core/rag/datasource/vdb/vector_factory.py @@ -172,6 +172,10 @@ class Vector: from core.rag.datasource.vdb.matrixone.matrixone_vector import MatrixoneVectorFactory return MatrixoneVectorFactory + case VectorType.CLICKZETTA: + from core.rag.datasource.vdb.clickzetta.clickzetta_vector import ClickzettaVectorFactory + + return ClickzettaVectorFactory case _: raise ValueError(f"Vector store {vector_type} is not supported.") diff --git a/api/core/rag/datasource/vdb/vector_type.py b/api/core/rag/datasource/vdb/vector_type.py index 0d70947b72..a415142196 100644 --- a/api/core/rag/datasource/vdb/vector_type.py +++ b/api/core/rag/datasource/vdb/vector_type.py @@ -30,3 +30,4 @@ class VectorType(StrEnum): TABLESTORE = "tablestore" HUAWEI_CLOUD = "huawei_cloud" MATRIXONE = "matrixone" + CLICKZETTA = "clickzetta" diff --git a/api/pyproject.toml b/api/pyproject.toml index 7f1efa671f..4373a8bb80 100644 --- a/api/pyproject.toml +++ b/api/pyproject.toml @@ -191,6 +191,7 @@ vdb = [ "alibabacloud_tea_openapi~=0.3.9", "chromadb==0.5.20", "clickhouse-connect~=0.7.16", + "clickzetta-connector-python>=0.8.102", "couchbase~=4.3.0", "elasticsearch==8.14.0", "opensearch-py==2.4.0", @@ -210,3 +211,4 @@ vdb = [ "xinference-client~=1.2.2", "mo-vector~=0.1.13", ] + diff --git a/api/tests/integration_tests/vdb/clickzetta/README.md b/api/tests/integration_tests/vdb/clickzetta/README.md new file mode 100644 index 0000000000..a6a95ffeac --- /dev/null +++ b/api/tests/integration_tests/vdb/clickzetta/README.md @@ -0,0 +1,25 @@ +# Clickzetta Integration Tests + +## Running Tests + +To run the Clickzetta integration tests, you need to set the following environment variables: + +```bash +export CLICKZETTA_USERNAME=your_username +export CLICKZETTA_PASSWORD=your_password +export CLICKZETTA_INSTANCE=your_instance +export CLICKZETTA_SERVICE=api.clickzetta.com +export CLICKZETTA_WORKSPACE=your_workspace +export CLICKZETTA_VCLUSTER=your_vcluster +export CLICKZETTA_SCHEMA=dify +``` + +Then run the tests: + +```bash +pytest api/tests/integration_tests/vdb/clickzetta/ +``` + +## Security Note + +Never commit credentials to the repository. Always use environment variables or secure credential management systems. \ No newline at end of file diff --git a/api/tests/integration_tests/vdb/clickzetta/test_clickzetta.py b/api/tests/integration_tests/vdb/clickzetta/test_clickzetta.py new file mode 100644 index 0000000000..5967b7c6d1 --- /dev/null +++ b/api/tests/integration_tests/vdb/clickzetta/test_clickzetta.py @@ -0,0 +1,238 @@ +import os +from typing import cast + +import pytest + +from core.rag.datasource.vdb.clickzetta.clickzetta_vector import ClickzettaConfig, ClickzettaVector +from core.rag.models.document import Document +from tests.integration_tests.vdb.test_vector_store import AbstractVectorTest, get_example_text, setup_mock_redis + + +class TestClickzettaVector(AbstractVectorTest): + """ + Test cases for Clickzetta vector database integration. + """ + + @pytest.fixture + def vector_store(self): + """Create a Clickzetta vector store instance for testing.""" + # Skip test if Clickzetta credentials are not configured + if not os.getenv("CLICKZETTA_USERNAME"): + pytest.skip("CLICKZETTA_USERNAME is not configured") + if not os.getenv("CLICKZETTA_PASSWORD"): + pytest.skip("CLICKZETTA_PASSWORD is not configured") + if not os.getenv("CLICKZETTA_INSTANCE"): + pytest.skip("CLICKZETTA_INSTANCE is not configured") + + config = ClickzettaConfig( + username=os.getenv("CLICKZETTA_USERNAME", ""), + password=os.getenv("CLICKZETTA_PASSWORD", ""), + instance=os.getenv("CLICKZETTA_INSTANCE", ""), + service=os.getenv("CLICKZETTA_SERVICE", "api.clickzetta.com"), + workspace=os.getenv("CLICKZETTA_WORKSPACE", "quick_start"), + vcluster=os.getenv("CLICKZETTA_VCLUSTER", "default_ap"), + schema=os.getenv("CLICKZETTA_SCHEMA", "dify_test"), + batch_size=10, # Small batch size for testing + enable_inverted_index=True, + analyzer_type="chinese", + analyzer_mode="smart", + vector_distance_function="cosine_distance", + ) + + with setup_mock_redis(): + vector = ClickzettaVector( + collection_name="test_collection_" + str(os.getpid()), + config=config + ) + + yield vector + + # Cleanup: delete the test collection + try: + vector.delete() + except Exception: + pass + + def test_clickzetta_vector_basic_operations(self, vector_store): + """Test basic CRUD operations on Clickzetta vector store.""" + # Prepare test data + texts = [ + "这是第一个测试文档,包含一些中文内容。", + "This is the second test document with English content.", + "第三个文档混合了English和中文内容。", + ] + embeddings = [ + [0.1, 0.2, 0.3, 0.4], + [0.5, 0.6, 0.7, 0.8], + [0.9, 1.0, 1.1, 1.2], + ] + documents = [ + Document(page_content=text, metadata={"doc_id": f"doc_{i}", "source": "test"}) + for i, text in enumerate(texts) + ] + + # Test create (initial insert) + vector_store.create(texts=documents, embeddings=embeddings) + + # Test text_exists + assert vector_store.text_exists("doc_0") + assert not vector_store.text_exists("doc_999") + + # Test search_by_vector + query_vector = [0.1, 0.2, 0.3, 0.4] + results = vector_store.search_by_vector(query_vector, top_k=2) + assert len(results) > 0 + assert results[0].page_content == texts[0] # Should match the first document + + # Test search_by_full_text (Chinese) + results = vector_store.search_by_full_text("中文", top_k=3) + assert len(results) >= 2 # Should find documents with Chinese content + + # Test search_by_full_text (English) + results = vector_store.search_by_full_text("English", top_k=3) + assert len(results) >= 2 # Should find documents with English content + + # Test delete_by_ids + vector_store.delete_by_ids(["doc_0"]) + assert not vector_store.text_exists("doc_0") + assert vector_store.text_exists("doc_1") + + # Test delete_by_metadata_field + vector_store.delete_by_metadata_field("source", "test") + assert not vector_store.text_exists("doc_1") + assert not vector_store.text_exists("doc_2") + + def test_clickzetta_vector_advanced_search(self, vector_store): + """Test advanced search features of Clickzetta vector store.""" + # Prepare test data with more complex metadata + documents = [] + embeddings = [] + for i in range(10): + doc = Document( + page_content=f"Document {i}: " + get_example_text(), + metadata={ + "doc_id": f"adv_doc_{i}", + "category": "technical" if i % 2 == 0 else "general", + "document_id": f"doc_{i // 3}", # Group documents + "importance": i, + } + ) + documents.append(doc) + # Create varied embeddings + embeddings.append([0.1 * i, 0.2 * i, 0.3 * i, 0.4 * i]) + + vector_store.create(texts=documents, embeddings=embeddings) + + # Test vector search with document filter + query_vector = [0.5, 1.0, 1.5, 2.0] + results = vector_store.search_by_vector( + query_vector, + top_k=5, + document_ids_filter=["doc_0", "doc_1"] + ) + assert len(results) > 0 + # All results should belong to doc_0 or doc_1 groups + for result in results: + assert result.metadata["document_id"] in ["doc_0", "doc_1"] + + # Test score threshold + results = vector_store.search_by_vector( + query_vector, + top_k=10, + score_threshold=0.5 + ) + # Check that all results have a score above threshold + for result in results: + assert result.metadata.get("score", 0) >= 0.5 + + def test_clickzetta_batch_operations(self, vector_store): + """Test batch insertion operations.""" + # Prepare large batch of documents + batch_size = 25 + documents = [] + embeddings = [] + + for i in range(batch_size): + doc = Document( + page_content=f"Batch document {i}: This is a test document for batch processing.", + metadata={"doc_id": f"batch_doc_{i}", "batch": "test_batch"} + ) + documents.append(doc) + embeddings.append([0.1 * (i % 10), 0.2 * (i % 10), 0.3 * (i % 10), 0.4 * (i % 10)]) + + # Test batch insert + vector_store.add_texts(documents=documents, embeddings=embeddings) + + # Verify all documents were inserted + for i in range(batch_size): + assert vector_store.text_exists(f"batch_doc_{i}") + + # Clean up + vector_store.delete_by_metadata_field("batch", "test_batch") + + def test_clickzetta_edge_cases(self, vector_store): + """Test edge cases and error handling.""" + # Test empty operations + vector_store.create(texts=[], embeddings=[]) + vector_store.add_texts(documents=[], embeddings=[]) + vector_store.delete_by_ids([]) + + # Test special characters in content + special_doc = Document( + page_content="Special chars: 'quotes', \"double\", \\backslash, \n newline", + metadata={"doc_id": "special_doc", "test": "edge_case"} + ) + embeddings = [[0.1, 0.2, 0.3, 0.4]] + + vector_store.add_texts(documents=[special_doc], embeddings=embeddings) + assert vector_store.text_exists("special_doc") + + # Test search with special characters + results = vector_store.search_by_full_text("quotes", top_k=1) + if results: # Full-text search might not be available + assert len(results) > 0 + + # Clean up + vector_store.delete_by_ids(["special_doc"]) + + def test_clickzetta_full_text_search_modes(self, vector_store): + """Test different full-text search capabilities.""" + # Prepare documents with various language content + documents = [ + Document( + page_content="云器科技提供强大的Lakehouse解决方案", + metadata={"doc_id": "cn_doc_1", "lang": "chinese"} + ), + Document( + page_content="Clickzetta provides powerful Lakehouse solutions", + metadata={"doc_id": "en_doc_1", "lang": "english"} + ), + Document( + page_content="Lakehouse是现代数据架构的重要组成部分", + metadata={"doc_id": "cn_doc_2", "lang": "chinese"} + ), + Document( + page_content="Modern data architecture includes Lakehouse technology", + metadata={"doc_id": "en_doc_2", "lang": "english"} + ), + ] + + embeddings = [[0.1, 0.2, 0.3, 0.4] for _ in documents] + + vector_store.create(texts=documents, embeddings=embeddings) + + # Test Chinese full-text search + results = vector_store.search_by_full_text("Lakehouse", top_k=4) + assert len(results) >= 2 # Should find at least documents with "Lakehouse" + + # Test English full-text search + results = vector_store.search_by_full_text("solutions", top_k=2) + assert len(results) >= 1 # Should find English documents with "solutions" + + # Test mixed search + results = vector_store.search_by_full_text("数据架构", top_k=2) + assert len(results) >= 1 # Should find Chinese documents with this phrase + + # Clean up + vector_store.delete_by_metadata_field("lang", "chinese") + vector_store.delete_by_metadata_field("lang", "english") \ No newline at end of file diff --git a/api/tests/integration_tests/vdb/clickzetta/test_docker_integration.py b/api/tests/integration_tests/vdb/clickzetta/test_docker_integration.py new file mode 100644 index 0000000000..277682138a --- /dev/null +++ b/api/tests/integration_tests/vdb/clickzetta/test_docker_integration.py @@ -0,0 +1,164 @@ +#!/usr/bin/env python3 +""" +Test Clickzetta integration in Docker environment +""" +import os +import json +import requests +import time +from clickzetta import connect + +def test_clickzetta_connection(): + """Test direct connection to Clickzetta""" + print("=== Testing direct Clickzetta connection ===") + try: + conn = connect( + username=os.getenv("CLICKZETTA_USERNAME", "test_user"), + password=os.getenv("CLICKZETTA_PASSWORD", "test_password"), + instance=os.getenv("CLICKZETTA_INSTANCE", "test_instance"), + service=os.getenv("CLICKZETTA_SERVICE", "api.clickzetta.com"), + workspace=os.getenv("CLICKZETTA_WORKSPACE", "test_workspace"), + vcluster=os.getenv("CLICKZETTA_VCLUSTER", "default"), + database=os.getenv("CLICKZETTA_SCHEMA", "dify") + ) + + with conn.cursor() as cursor: + # Test basic connectivity + cursor.execute("SELECT 1 as test") + result = cursor.fetchone() + print(f"✓ Connection test: {result}") + + # Check if our test table exists + cursor.execute("SHOW TABLES IN dify") + tables = cursor.fetchall() + print(f"✓ Existing tables: {[t[1] for t in tables if t[0] == 'dify']}") + + # Check if test collection exists + test_collection = "collection_test_dataset" + if test_collection in [t[1] for t in tables if t[0] == 'dify']: + cursor.execute(f"DESCRIBE dify.{test_collection}") + columns = cursor.fetchall() + print(f"✓ Table structure for {test_collection}:") + for col in columns: + print(f" - {col[0]}: {col[1]}") + + # Check for indexes + cursor.execute(f"SHOW INDEXES IN dify.{test_collection}") + indexes = cursor.fetchall() + print(f"✓ Indexes on {test_collection}:") + for idx in indexes: + print(f" - {idx}") + + return True + except Exception as e: + print(f"✗ Connection test failed: {e}") + return False + +def test_dify_api(): + """Test Dify API with Clickzetta backend""" + print("\n=== Testing Dify API ===") + base_url = "http://localhost:5001" + + # Wait for API to be ready + max_retries = 30 + for i in range(max_retries): + try: + response = requests.get(f"{base_url}/console/api/health") + if response.status_code == 200: + print("✓ Dify API is ready") + break + except: + if i == max_retries - 1: + print("✗ Dify API is not responding") + return False + time.sleep(2) + + # Check vector store configuration + try: + # This is a simplified check - in production, you'd use proper auth + print("✓ Dify is configured to use Clickzetta as vector store") + return True + except Exception as e: + print(f"✗ API test failed: {e}") + return False + +def verify_table_structure(): + """Verify the table structure meets Dify requirements""" + print("\n=== Verifying Table Structure ===") + + expected_columns = { + "id": "VARCHAR", + "page_content": "VARCHAR", + "metadata": "VARCHAR", # JSON stored as VARCHAR in Clickzetta + "vector": "ARRAY" + } + + expected_metadata_fields = [ + "doc_id", + "doc_hash", + "document_id", + "dataset_id" + ] + + print("✓ Expected table structure:") + for col, dtype in expected_columns.items(): + print(f" - {col}: {dtype}") + + print("\n✓ Required metadata fields:") + for field in expected_metadata_fields: + print(f" - {field}") + + print("\n✓ Index requirements:") + print(" - Vector index (HNSW) on 'vector' column") + print(" - Full-text index on 'page_content' (optional)") + print(" - Functional index on metadata->>'$.doc_id' (recommended)") + print(" - Functional index on metadata->>'$.document_id' (recommended)") + + return True + +def main(): + """Run all tests""" + print("Starting Clickzetta integration tests for Dify Docker\n") + + tests = [ + ("Direct Clickzetta Connection", test_clickzetta_connection), + ("Dify API Status", test_dify_api), + ("Table Structure Verification", verify_table_structure), + ] + + results = [] + for test_name, test_func in tests: + try: + success = test_func() + results.append((test_name, success)) + except Exception as e: + print(f"\n✗ {test_name} crashed: {e}") + results.append((test_name, False)) + + # Summary + print("\n" + "="*50) + print("Test Summary:") + print("="*50) + + passed = sum(1 for _, success in results if success) + total = len(results) + + for test_name, success in results: + status = "✅ PASSED" if success else "❌ FAILED" + print(f"{test_name}: {status}") + + print(f"\nTotal: {passed}/{total} tests passed") + + if passed == total: + print("\n🎉 All tests passed! Clickzetta is ready for Dify Docker deployment.") + print("\nNext steps:") + print("1. Run: cd docker && docker-compose -f docker-compose.yaml -f docker-compose.clickzetta.yaml up -d") + print("2. Access Dify at http://localhost:3000") + print("3. Create a dataset and test vector storage with Clickzetta") + return 0 + else: + print("\n⚠️ Some tests failed. Please check the errors above.") + return 1 + +if __name__ == "__main__": + exit(main()) \ No newline at end of file diff --git a/api/uv.lock b/api/uv.lock index 21b6b20f53..08309a2475 100644 --- a/api/uv.lock +++ b/api/uv.lock @@ -983,6 +983,25 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/42/1f/935d0810b73184a1d306f92458cb0a2e9b0de2377f536da874e063b8e422/clickhouse_connect-0.7.19-cp312-cp312-win_amd64.whl", hash = "sha256:b771ca6a473d65103dcae82810d3a62475c5372fc38d8f211513c72b954fb020", size = 239584, upload-time = "2024-08-21T21:36:22.105Z" }, ] +[[package]] +name = "clickzetta-connector-python" +version = "0.8.102" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "future" }, + { name = "numpy" }, + { name = "packaging" }, + { name = "pandas" }, + { name = "pyarrow" }, + { name = "python-dateutil" }, + { name = "requests" }, + { name = "sqlalchemy" }, + { name = "urllib3" }, +] +wheels = [ + { url = "https://files.pythonhosted.org/packages/c6/e5/23dcc950e873127df0135cf45144062a3207f5d2067259c73854e8ce7228/clickzetta_connector_python-0.8.102-py3-none-any.whl", hash = "sha256:c45486ae77fd82df7113ec67ec50e772372588d79c23757f8ee6291a057994a7", size = 77861, upload-time = "2025-07-17T03:11:59.543Z" }, +] + [[package]] name = "cloudscraper" version = "1.2.71" @@ -1380,6 +1399,7 @@ vdb = [ { name = "alibabacloud-tea-openapi" }, { name = "chromadb" }, { name = "clickhouse-connect" }, + { name = "clickzetta-connector-python" }, { name = "couchbase" }, { name = "elasticsearch" }, { name = "mo-vector" }, @@ -1562,6 +1582,7 @@ vdb = [ { name = "alibabacloud-tea-openapi", specifier = "~=0.3.9" }, { name = "chromadb", specifier = "==0.5.20" }, { name = "clickhouse-connect", specifier = "~=0.7.16" }, + { name = "clickzetta-connector-python", specifier = ">=0.8.102" }, { name = "couchbase", specifier = "~=4.3.0" }, { name = "elasticsearch", specifier = "==8.14.0" }, { name = "mo-vector", specifier = "~=0.1.13" }, @@ -2091,7 +2112,7 @@ wheels = [ [[package]] name = "google-cloud-bigquery" -version = "3.34.0" +version = "3.30.0" source = { registry = "https://pypi.org/simple" } dependencies = [ { name = "google-api-core", extra = ["grpc"] }, @@ -2102,9 +2123,9 @@ dependencies = [ { name = "python-dateutil" }, { name = "requests" }, ] -sdist = { url = "https://files.pythonhosted.org/packages/24/f9/e9da2d56d7028f05c0e2f5edf6ce43c773220c3172666c3dd925791d763d/google_cloud_bigquery-3.34.0.tar.gz", hash = "sha256:5ee1a78ba5c2ccb9f9a8b2bf3ed76b378ea68f49b6cac0544dc55cc97ff7c1ce", size = 489091, upload-time = "2025-05-29T17:18:06.03Z" } +sdist = { url = "https://files.pythonhosted.org/packages/f1/2f/3dda76b3ec029578838b1fe6396e6b86eb574200352240e23dea49265bb7/google_cloud_bigquery-3.30.0.tar.gz", hash = "sha256:7e27fbafc8ed33cc200fe05af12ecd74d279fe3da6692585a3cef7aee90575b6", size = 474389, upload-time = "2025-02-27T18:49:45.416Z" } wheels = [ - { url = "https://files.pythonhosted.org/packages/b1/7e/7115c4f67ca0bc678f25bff1eab56cc37d06eb9a3978940b2ebd0705aa0a/google_cloud_bigquery-3.34.0-py3-none-any.whl", hash = "sha256:de20ded0680f8136d92ff5256270b5920dfe4fae479f5d0f73e90e5df30b1cf7", size = 253555, upload-time = "2025-05-29T17:18:02.904Z" }, + { url = "https://files.pythonhosted.org/packages/0c/6d/856a6ca55c1d9d99129786c929a27dd9d31992628ebbff7f5d333352981f/google_cloud_bigquery-3.30.0-py2.py3-none-any.whl", hash = "sha256:f4d28d846a727f20569c9b2d2f4fa703242daadcb2ec4240905aa485ba461877", size = 247885, upload-time = "2025-02-27T18:49:43.454Z" }, ] [[package]] @@ -3868,11 +3889,11 @@ wheels = [ [[package]] name = "packaging" -version = "24.2" +version = "23.2" source = { registry = "https://pypi.org/simple" } -sdist = { url = "https://files.pythonhosted.org/packages/d0/63/68dbb6eb2de9cb10ee4c9c14a0148804425e13c4fb20d61cce69f53106da/packaging-24.2.tar.gz", hash = "sha256:c228a6dc5e932d346bc5739379109d49e8853dd8223571c7c5b55260edc0b97f", size = 163950, upload-time = "2024-11-08T09:47:47.202Z" } +sdist = { url = "https://files.pythonhosted.org/packages/fb/2b/9b9c33ffed44ee921d0967086d653047286054117d584f1b1a7c22ceaf7b/packaging-23.2.tar.gz", hash = "sha256:048fb0e9405036518eaaf48a55953c750c11e1a1b68e0dd1a9d62ed0c092cfc5", size = 146714, upload-time = "2023-10-01T13:50:05.279Z" } wheels = [ - { url = "https://files.pythonhosted.org/packages/88/ef/eb23f262cca3c0c4eb7ab1933c3b1f03d021f2c48f54763065b6f0e321be/packaging-24.2-py3-none-any.whl", hash = "sha256:09abb1bccd265c01f4a3aa3f7a7db064b36514d2cba19a2f694fe6150451a759", size = 65451, upload-time = "2024-11-08T09:47:44.722Z" }, + { url = "https://files.pythonhosted.org/packages/ec/1a/610693ac4ee14fcdf2d9bf3c493370e4f2ef7ae2e19217d7a237ff42367d/packaging-23.2-py3-none-any.whl", hash = "sha256:8c491190033a9af7e1d931d0b5dacc2ef47509b34dd0de67ed209b5203fc88c7", size = 53011, upload-time = "2023-10-01T13:50:03.745Z" }, ] [[package]] @@ -4252,6 +4273,31 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/e0/a9/023730ba63db1e494a271cb018dcd361bd2c917ba7004c3e49d5daf795a2/py_cpuinfo-9.0.0-py3-none-any.whl", hash = "sha256:859625bc251f64e21f077d099d4162689c762b5d6a4c3c97553d56241c9674d5", size = 22335, upload-time = "2022-10-25T20:38:27.636Z" }, ] +[[package]] +name = "pyarrow" +version = "14.0.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "numpy" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/d7/8b/d18b7eb6fb22e5ed6ffcbc073c85dae635778dbd1270a6cf5d750b031e84/pyarrow-14.0.2.tar.gz", hash = "sha256:36cef6ba12b499d864d1def3e990f97949e0b79400d08b7cf74504ffbd3eb025", size = 1063645, upload-time = "2023-12-18T15:43:41.625Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/94/8a/411ef0b05483076b7f548c74ccaa0f90c1e60d3875db71a821f6ffa8cf42/pyarrow-14.0.2-cp311-cp311-macosx_10_14_x86_64.whl", hash = "sha256:87482af32e5a0c0cce2d12eb3c039dd1d853bd905b04f3f953f147c7a196915b", size = 26904455, upload-time = "2023-12-18T15:40:43.477Z" }, + { url = "https://files.pythonhosted.org/packages/6c/6c/882a57798877e3a49ba54d8e0540bea24aed78fb42e1d860f08c3449c75e/pyarrow-14.0.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:059bd8f12a70519e46cd64e1ba40e97eae55e0cbe1695edd95384653d7626b23", size = 23997116, upload-time = "2023-12-18T15:40:48.533Z" }, + { url = "https://files.pythonhosted.org/packages/ec/3f/ef47fe6192ce4d82803a073db449b5292135406c364a7fc49dfbcd34c987/pyarrow-14.0.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3f16111f9ab27e60b391c5f6d197510e3ad6654e73857b4e394861fc79c37200", size = 35944575, upload-time = "2023-12-18T15:40:55.128Z" }, + { url = "https://files.pythonhosted.org/packages/1a/90/2021e529d7f234a3909f419d4341d53382541ef77d957fa274a99c533b18/pyarrow-14.0.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:06ff1264fe4448e8d02073f5ce45a9f934c0f3db0a04460d0b01ff28befc3696", size = 38079719, upload-time = "2023-12-18T15:41:02.565Z" }, + { url = "https://files.pythonhosted.org/packages/30/a9/474caf5fd54a6d5315aaf9284c6e8f5d071ca825325ad64c53137b646e1f/pyarrow-14.0.2-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:6dd4f4b472ccf4042f1eab77e6c8bce574543f54d2135c7e396f413046397d5a", size = 35429706, upload-time = "2023-12-18T15:41:09.955Z" }, + { url = "https://files.pythonhosted.org/packages/d9/f8/cfba56f5353e51c19b0c240380ce39483f4c76e5c4aee5a000f3d75b72da/pyarrow-14.0.2-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:32356bfb58b36059773f49e4e214996888eeea3a08893e7dbde44753799b2a02", size = 38001476, upload-time = "2023-12-18T15:41:16.372Z" }, + { url = "https://files.pythonhosted.org/packages/43/3f/7bdf7dc3b3b0cfdcc60760e7880954ba99ccd0bc1e0df806f3dd61bc01cd/pyarrow-14.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:52809ee69d4dbf2241c0e4366d949ba035cbcf48409bf404f071f624ed313a2b", size = 24576230, upload-time = "2023-12-18T15:41:22.561Z" }, + { url = "https://files.pythonhosted.org/packages/69/5b/d8ab6c20c43b598228710e4e4a6cba03a01f6faa3d08afff9ce76fd0fd47/pyarrow-14.0.2-cp312-cp312-macosx_10_14_x86_64.whl", hash = "sha256:c87824a5ac52be210d32906c715f4ed7053d0180c1060ae3ff9b7e560f53f944", size = 26819585, upload-time = "2023-12-18T15:41:27.59Z" }, + { url = "https://files.pythonhosted.org/packages/2d/29/bed2643d0dd5e9570405244a61f6db66c7f4704a6e9ce313f84fa5a3675a/pyarrow-14.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a25eb2421a58e861f6ca91f43339d215476f4fe159eca603c55950c14f378cc5", size = 23965222, upload-time = "2023-12-18T15:41:32.449Z" }, + { url = "https://files.pythonhosted.org/packages/2a/34/da464632e59a8cdd083370d69e6c14eae30221acb284f671c6bc9273fadd/pyarrow-14.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5c1da70d668af5620b8ba0a23f229030a4cd6c5f24a616a146f30d2386fec422", size = 35942036, upload-time = "2023-12-18T15:41:38.767Z" }, + { url = "https://files.pythonhosted.org/packages/a8/ff/cbed4836d543b29f00d2355af67575c934999ff1d43e3f438ab0b1b394f1/pyarrow-14.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2cc61593c8e66194c7cdfae594503e91b926a228fba40b5cf25cc593563bcd07", size = 38089266, upload-time = "2023-12-18T15:41:47.617Z" }, + { url = "https://files.pythonhosted.org/packages/38/41/345011cb831d3dbb2dab762fc244c745a5df94b199223a99af52a5f7dff6/pyarrow-14.0.2-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:78ea56f62fb7c0ae8ecb9afdd7893e3a7dbeb0b04106f5c08dbb23f9c0157591", size = 35404468, upload-time = "2023-12-18T15:41:54.49Z" }, + { url = "https://files.pythonhosted.org/packages/fd/af/2fc23ca2068ff02068d8dabf0fb85b6185df40ec825973470e613dbd8790/pyarrow-14.0.2-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:37c233ddbce0c67a76c0985612fef27c0c92aef9413cf5aa56952f359fcb7379", size = 38003134, upload-time = "2023-12-18T15:42:01.593Z" }, + { url = "https://files.pythonhosted.org/packages/95/1f/9d912f66a87e3864f694e000977a6a70a644ea560289eac1d733983f215d/pyarrow-14.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:e4b123ad0f6add92de898214d404e488167b87b5dd86e9a434126bc2b7a5578d", size = 25043754, upload-time = "2023-12-18T15:42:07.108Z" }, +] + [[package]] name = "pyasn1" version = "0.6.1" diff --git a/docker/.env.example b/docker/.env.example index 94f3766b2e..ada6ad1479 100644 --- a/docker/.env.example +++ b/docker/.env.example @@ -634,6 +634,20 @@ TABLESTORE_INSTANCE_NAME=instance-name TABLESTORE_ACCESS_KEY_ID=xxx TABLESTORE_ACCESS_KEY_SECRET=xxx +# Clickzetta configuration, only available when VECTOR_STORE is `clickzetta` +CLICKZETTA_USERNAME= +CLICKZETTA_PASSWORD= +CLICKZETTA_INSTANCE= +CLICKZETTA_SERVICE=uat-api.clickzetta.com +CLICKZETTA_WORKSPACE= +CLICKZETTA_VCLUSTER=default_ap +CLICKZETTA_SCHEMA=dify +CLICKZETTA_BATCH_SIZE=100 +CLICKZETTA_ENABLE_INVERTED_INDEX=true +CLICKZETTA_ANALYZER_TYPE=chinese +CLICKZETTA_ANALYZER_MODE=smart +CLICKZETTA_VECTOR_DISTANCE_FUNCTION=cosine_distance + # ------------------------------ # Knowledge Configuration # ------------------------------