|
|
|
|
@ -1,3 +1,4 @@
|
|
|
|
|
import hashlib
|
|
|
|
|
import json
|
|
|
|
|
import logging
|
|
|
|
|
import uuid
|
|
|
|
|
@ -61,12 +62,12 @@ CREATE TABLE IF NOT EXISTS {table_name} (
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
SQL_CREATE_INDEX = """
|
|
|
|
|
CREATE INDEX IF NOT EXISTS embedding_cosine_v1_idx ON {table_name}
|
|
|
|
|
CREATE INDEX IF NOT EXISTS embedding_cosine_v1_idx_{index_hash} ON {table_name}
|
|
|
|
|
USING hnsw (embedding vector_cosine_ops) WITH (m = 16, ef_construction = 64);
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
SQL_CREATE_INDEX_PG_BIGM = """
|
|
|
|
|
CREATE INDEX IF NOT EXISTS bigm_idx ON {table_name}
|
|
|
|
|
CREATE INDEX IF NOT EXISTS bigm_idx_{index_hash} ON {table_name}
|
|
|
|
|
USING gin (text gin_bigm_ops);
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
@ -76,6 +77,7 @@ class PGVector(BaseVector):
|
|
|
|
|
super().__init__(collection_name)
|
|
|
|
|
self.pool = self._create_connection_pool(config)
|
|
|
|
|
self.table_name = f"embedding_{collection_name}"
|
|
|
|
|
self.index_hash = hashlib.md5(self.table_name.encode()).hexdigest()[:8]
|
|
|
|
|
self.pg_bigm = config.pg_bigm
|
|
|
|
|
|
|
|
|
|
def get_type(self) -> str:
|
|
|
|
|
@ -256,10 +258,9 @@ class PGVector(BaseVector):
|
|
|
|
|
# PG hnsw index only support 2000 dimension or less
|
|
|
|
|
# ref: https://github.com/pgvector/pgvector?tab=readme-ov-file#indexing
|
|
|
|
|
if dimension <= 2000:
|
|
|
|
|
cur.execute(SQL_CREATE_INDEX.format(table_name=self.table_name))
|
|
|
|
|
cur.execute(SQL_CREATE_INDEX.format(table_name=self.table_name, index_hash=self.index_hash))
|
|
|
|
|
if self.pg_bigm:
|
|
|
|
|
cur.execute("CREATE EXTENSION IF NOT EXISTS pg_bigm")
|
|
|
|
|
cur.execute(SQL_CREATE_INDEX_PG_BIGM.format(table_name=self.table_name))
|
|
|
|
|
cur.execute(SQL_CREATE_INDEX_PG_BIGM.format(table_name=self.table_name, index_hash=self.index_hash))
|
|
|
|
|
redis_client.set(collection_exist_cache_key, 1, ex=3600)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|