|
|
|
|
@ -55,24 +55,15 @@ class WorkflowCycleManager:
|
|
|
|
|
self._workflow_execution_repository = workflow_execution_repository
|
|
|
|
|
self._workflow_node_execution_repository = workflow_node_execution_repository
|
|
|
|
|
|
|
|
|
|
# Initialize caches for workflow execution cycle
|
|
|
|
|
# These caches avoid redundant repository calls during a single workflow execution
|
|
|
|
|
self._workflow_execution_cache: dict[str, WorkflowExecution] = {}
|
|
|
|
|
self._node_execution_cache: dict[str, WorkflowNodeExecution] = {}
|
|
|
|
|
|
|
|
|
|
def handle_workflow_run_start(self) -> WorkflowExecution:
|
|
|
|
|
inputs = {**self._application_generate_entity.inputs}
|
|
|
|
|
inputs = self._prepare_workflow_inputs()
|
|
|
|
|
execution_id = self._get_or_generate_execution_id()
|
|
|
|
|
|
|
|
|
|
# Iterate over SystemVariable fields using Pydantic's model_fields
|
|
|
|
|
if self._workflow_system_variables:
|
|
|
|
|
for field_name, value in self._workflow_system_variables.to_dict().items():
|
|
|
|
|
if field_name == SystemVariableKey.CONVERSATION_ID:
|
|
|
|
|
continue
|
|
|
|
|
inputs[f"sys.{field_name}"] = value
|
|
|
|
|
|
|
|
|
|
# handle special values
|
|
|
|
|
inputs = dict(WorkflowEntry.handle_special_values(inputs) or {})
|
|
|
|
|
|
|
|
|
|
# init workflow run
|
|
|
|
|
# TODO: This workflow_run_id should always not be None, maybe we can use a more elegant way to handle this
|
|
|
|
|
execution_id = str(
|
|
|
|
|
self._workflow_system_variables.workflow_execution_id if self._workflow_system_variables else None
|
|
|
|
|
) or str(uuid4())
|
|
|
|
|
execution = WorkflowExecution.new(
|
|
|
|
|
id_=execution_id,
|
|
|
|
|
workflow_id=self._workflow_info.workflow_id,
|
|
|
|
|
@ -83,9 +74,7 @@ class WorkflowCycleManager:
|
|
|
|
|
started_at=datetime.now(UTC).replace(tzinfo=None),
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
self._workflow_execution_repository.save(execution)
|
|
|
|
|
|
|
|
|
|
return execution
|
|
|
|
|
return self._save_and_cache_workflow_execution(execution)
|
|
|
|
|
|
|
|
|
|
def handle_workflow_run_success(
|
|
|
|
|
self,
|
|
|
|
|
@ -99,23 +88,15 @@ class WorkflowCycleManager:
|
|
|
|
|
) -> WorkflowExecution:
|
|
|
|
|
workflow_execution = self._get_workflow_execution_or_raise_error(workflow_run_id)
|
|
|
|
|
|
|
|
|
|
# outputs = WorkflowEntry.handle_special_values(outputs)
|
|
|
|
|
self._update_workflow_execution_completion(
|
|
|
|
|
workflow_execution,
|
|
|
|
|
status=WorkflowExecutionStatus.SUCCEEDED,
|
|
|
|
|
outputs=outputs,
|
|
|
|
|
total_tokens=total_tokens,
|
|
|
|
|
total_steps=total_steps,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
workflow_execution.status = WorkflowExecutionStatus.SUCCEEDED
|
|
|
|
|
workflow_execution.outputs = outputs or {}
|
|
|
|
|
workflow_execution.total_tokens = total_tokens
|
|
|
|
|
workflow_execution.total_steps = total_steps
|
|
|
|
|
workflow_execution.finished_at = datetime.now(UTC).replace(tzinfo=None)
|
|
|
|
|
|
|
|
|
|
if trace_manager:
|
|
|
|
|
trace_manager.add_trace_task(
|
|
|
|
|
TraceTask(
|
|
|
|
|
TraceTaskName.WORKFLOW_TRACE,
|
|
|
|
|
workflow_execution=workflow_execution,
|
|
|
|
|
conversation_id=conversation_id,
|
|
|
|
|
user_id=trace_manager.user_id,
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
self._add_trace_task_if_needed(trace_manager, workflow_execution, conversation_id)
|
|
|
|
|
|
|
|
|
|
self._workflow_execution_repository.save(workflow_execution)
|
|
|
|
|
return workflow_execution
|
|
|
|
|
@ -132,24 +113,17 @@ class WorkflowCycleManager:
|
|
|
|
|
trace_manager: Optional[TraceQueueManager] = None,
|
|
|
|
|
) -> WorkflowExecution:
|
|
|
|
|
execution = self._get_workflow_execution_or_raise_error(workflow_run_id)
|
|
|
|
|
# outputs = WorkflowEntry.handle_special_values(dict(outputs) if outputs else None)
|
|
|
|
|
|
|
|
|
|
execution.status = WorkflowExecutionStatus.PARTIAL_SUCCEEDED
|
|
|
|
|
execution.outputs = outputs or {}
|
|
|
|
|
execution.total_tokens = total_tokens
|
|
|
|
|
execution.total_steps = total_steps
|
|
|
|
|
execution.finished_at = datetime.now(UTC).replace(tzinfo=None)
|
|
|
|
|
execution.exceptions_count = exceptions_count
|
|
|
|
|
self._update_workflow_execution_completion(
|
|
|
|
|
execution,
|
|
|
|
|
status=WorkflowExecutionStatus.PARTIAL_SUCCEEDED,
|
|
|
|
|
outputs=outputs,
|
|
|
|
|
total_tokens=total_tokens,
|
|
|
|
|
total_steps=total_steps,
|
|
|
|
|
exceptions_count=exceptions_count,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
if trace_manager:
|
|
|
|
|
trace_manager.add_trace_task(
|
|
|
|
|
TraceTask(
|
|
|
|
|
TraceTaskName.WORKFLOW_TRACE,
|
|
|
|
|
workflow_execution=execution,
|
|
|
|
|
conversation_id=conversation_id,
|
|
|
|
|
user_id=trace_manager.user_id,
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
self._add_trace_task_if_needed(trace_manager, execution, conversation_id)
|
|
|
|
|
|
|
|
|
|
self._workflow_execution_repository.save(execution)
|
|
|
|
|
return execution
|
|
|
|
|
@ -169,39 +143,18 @@ class WorkflowCycleManager:
|
|
|
|
|
workflow_execution = self._get_workflow_execution_or_raise_error(workflow_run_id)
|
|
|
|
|
now = naive_utc_now()
|
|
|
|
|
|
|
|
|
|
workflow_execution.status = WorkflowExecutionStatus(status.value)
|
|
|
|
|
workflow_execution.error_message = error_message
|
|
|
|
|
workflow_execution.total_tokens = total_tokens
|
|
|
|
|
workflow_execution.total_steps = total_steps
|
|
|
|
|
workflow_execution.finished_at = now
|
|
|
|
|
workflow_execution.exceptions_count = exceptions_count
|
|
|
|
|
|
|
|
|
|
# Use the instance repository to find running executions for a workflow run
|
|
|
|
|
running_node_executions = self._workflow_node_execution_repository.get_running_executions(
|
|
|
|
|
workflow_run_id=workflow_execution.id_
|
|
|
|
|
self._update_workflow_execution_completion(
|
|
|
|
|
workflow_execution,
|
|
|
|
|
status=status,
|
|
|
|
|
total_tokens=total_tokens,
|
|
|
|
|
total_steps=total_steps,
|
|
|
|
|
error_message=error_message,
|
|
|
|
|
exceptions_count=exceptions_count,
|
|
|
|
|
finished_at=now,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# Update the domain models
|
|
|
|
|
for node_execution in running_node_executions:
|
|
|
|
|
if node_execution.node_execution_id:
|
|
|
|
|
# Update the domain model
|
|
|
|
|
node_execution.status = WorkflowNodeExecutionStatus.FAILED
|
|
|
|
|
node_execution.error = error_message
|
|
|
|
|
node_execution.finished_at = now
|
|
|
|
|
node_execution.elapsed_time = (now - node_execution.created_at).total_seconds()
|
|
|
|
|
|
|
|
|
|
# Update the repository with the domain model
|
|
|
|
|
self._workflow_node_execution_repository.save(node_execution)
|
|
|
|
|
|
|
|
|
|
if trace_manager:
|
|
|
|
|
trace_manager.add_trace_task(
|
|
|
|
|
TraceTask(
|
|
|
|
|
TraceTaskName.WORKFLOW_TRACE,
|
|
|
|
|
workflow_execution=workflow_execution,
|
|
|
|
|
conversation_id=conversation_id,
|
|
|
|
|
user_id=trace_manager.user_id,
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
self._fail_running_node_executions(workflow_execution.id_, error_message, now)
|
|
|
|
|
self._add_trace_task_if_needed(trace_manager, workflow_execution, conversation_id)
|
|
|
|
|
|
|
|
|
|
self._workflow_execution_repository.save(workflow_execution)
|
|
|
|
|
return workflow_execution
|
|
|
|
|
@ -214,65 +167,24 @@ class WorkflowCycleManager:
|
|
|
|
|
) -> WorkflowNodeExecution:
|
|
|
|
|
workflow_execution = self._get_workflow_execution_or_raise_error(workflow_execution_id)
|
|
|
|
|
|
|
|
|
|
# Create a domain model
|
|
|
|
|
created_at = datetime.now(UTC).replace(tzinfo=None)
|
|
|
|
|
metadata = {
|
|
|
|
|
WorkflowNodeExecutionMetadataKey.PARALLEL_MODE_RUN_ID: event.parallel_mode_run_id,
|
|
|
|
|
WorkflowNodeExecutionMetadataKey.ITERATION_ID: event.in_iteration_id,
|
|
|
|
|
WorkflowNodeExecutionMetadataKey.LOOP_ID: event.in_loop_id,
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
domain_execution = WorkflowNodeExecution(
|
|
|
|
|
id=str(uuid4()),
|
|
|
|
|
workflow_id=workflow_execution.workflow_id,
|
|
|
|
|
workflow_execution_id=workflow_execution.id_,
|
|
|
|
|
predecessor_node_id=event.predecessor_node_id,
|
|
|
|
|
index=event.node_run_index,
|
|
|
|
|
node_execution_id=event.node_execution_id,
|
|
|
|
|
node_id=event.node_id,
|
|
|
|
|
node_type=event.node_type,
|
|
|
|
|
title=event.node_data.title,
|
|
|
|
|
domain_execution = self._create_node_execution_from_event(
|
|
|
|
|
workflow_execution=workflow_execution,
|
|
|
|
|
event=event,
|
|
|
|
|
status=WorkflowNodeExecutionStatus.RUNNING,
|
|
|
|
|
metadata=metadata,
|
|
|
|
|
created_at=created_at,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# Use the instance repository to save the domain model
|
|
|
|
|
self._workflow_node_execution_repository.save(domain_execution)
|
|
|
|
|
|
|
|
|
|
return domain_execution
|
|
|
|
|
return self._save_and_cache_node_execution(domain_execution)
|
|
|
|
|
|
|
|
|
|
def handle_workflow_node_execution_success(self, *, event: QueueNodeSucceededEvent) -> WorkflowNodeExecution:
|
|
|
|
|
# Get the domain model from repository
|
|
|
|
|
domain_execution = self._workflow_node_execution_repository.get_by_node_execution_id(event.node_execution_id)
|
|
|
|
|
if not domain_execution:
|
|
|
|
|
raise ValueError(f"Domain node execution not found: {event.node_execution_id}")
|
|
|
|
|
|
|
|
|
|
# Process data
|
|
|
|
|
inputs = event.inputs
|
|
|
|
|
process_data = event.process_data
|
|
|
|
|
outputs = event.outputs
|
|
|
|
|
domain_execution = self._get_node_execution_from_cache(event.node_execution_id)
|
|
|
|
|
|
|
|
|
|
# Convert metadata keys to strings
|
|
|
|
|
execution_metadata_dict = {}
|
|
|
|
|
if event.execution_metadata:
|
|
|
|
|
for key, value in event.execution_metadata.items():
|
|
|
|
|
execution_metadata_dict[key] = value
|
|
|
|
|
|
|
|
|
|
finished_at = datetime.now(UTC).replace(tzinfo=None)
|
|
|
|
|
elapsed_time = (finished_at - event.start_at).total_seconds()
|
|
|
|
|
|
|
|
|
|
# Update domain model
|
|
|
|
|
domain_execution.status = WorkflowNodeExecutionStatus.SUCCEEDED
|
|
|
|
|
domain_execution.update_from_mapping(
|
|
|
|
|
inputs=inputs, process_data=process_data, outputs=outputs, metadata=execution_metadata_dict
|
|
|
|
|
self._update_node_execution_completion(
|
|
|
|
|
domain_execution,
|
|
|
|
|
event=event,
|
|
|
|
|
status=WorkflowNodeExecutionStatus.SUCCEEDED,
|
|
|
|
|
)
|
|
|
|
|
domain_execution.finished_at = finished_at
|
|
|
|
|
domain_execution.elapsed_time = elapsed_time
|
|
|
|
|
|
|
|
|
|
# Update the repository with the domain model
|
|
|
|
|
self._workflow_node_execution_repository.save(domain_execution)
|
|
|
|
|
|
|
|
|
|
return domain_execution
|
|
|
|
|
|
|
|
|
|
def handle_workflow_node_execution_failed(
|
|
|
|
|
@ -288,96 +200,251 @@ class WorkflowCycleManager:
|
|
|
|
|
:param event: queue node failed event
|
|
|
|
|
:return:
|
|
|
|
|
"""
|
|
|
|
|
# Get the domain model from repository
|
|
|
|
|
domain_execution = self._workflow_node_execution_repository.get_by_node_execution_id(event.node_execution_id)
|
|
|
|
|
if not domain_execution:
|
|
|
|
|
raise ValueError(f"Domain node execution not found: {event.node_execution_id}")
|
|
|
|
|
|
|
|
|
|
# Process data
|
|
|
|
|
inputs = WorkflowEntry.handle_special_values(event.inputs)
|
|
|
|
|
process_data = WorkflowEntry.handle_special_values(event.process_data)
|
|
|
|
|
outputs = event.outputs
|
|
|
|
|
|
|
|
|
|
# Convert metadata keys to strings
|
|
|
|
|
execution_metadata_dict = {}
|
|
|
|
|
if event.execution_metadata:
|
|
|
|
|
for key, value in event.execution_metadata.items():
|
|
|
|
|
execution_metadata_dict[key] = value
|
|
|
|
|
|
|
|
|
|
finished_at = datetime.now(UTC).replace(tzinfo=None)
|
|
|
|
|
elapsed_time = (finished_at - event.start_at).total_seconds()
|
|
|
|
|
domain_execution = self._get_node_execution_from_cache(event.node_execution_id)
|
|
|
|
|
|
|
|
|
|
# Update domain model
|
|
|
|
|
domain_execution.status = (
|
|
|
|
|
WorkflowNodeExecutionStatus.FAILED
|
|
|
|
|
if not isinstance(event, QueueNodeExceptionEvent)
|
|
|
|
|
else WorkflowNodeExecutionStatus.EXCEPTION
|
|
|
|
|
status = (
|
|
|
|
|
WorkflowNodeExecutionStatus.EXCEPTION
|
|
|
|
|
if isinstance(event, QueueNodeExceptionEvent)
|
|
|
|
|
else WorkflowNodeExecutionStatus.FAILED
|
|
|
|
|
)
|
|
|
|
|
domain_execution.error = event.error
|
|
|
|
|
domain_execution.update_from_mapping(
|
|
|
|
|
inputs=inputs, process_data=process_data, outputs=outputs, metadata=execution_metadata_dict
|
|
|
|
|
|
|
|
|
|
self._update_node_execution_completion(
|
|
|
|
|
domain_execution,
|
|
|
|
|
event=event,
|
|
|
|
|
status=status,
|
|
|
|
|
error=event.error,
|
|
|
|
|
handle_special_values=True,
|
|
|
|
|
)
|
|
|
|
|
domain_execution.finished_at = finished_at
|
|
|
|
|
domain_execution.elapsed_time = elapsed_time
|
|
|
|
|
|
|
|
|
|
# Update the repository with the domain model
|
|
|
|
|
self._workflow_node_execution_repository.save(domain_execution)
|
|
|
|
|
|
|
|
|
|
return domain_execution
|
|
|
|
|
|
|
|
|
|
def handle_workflow_node_execution_retried(
|
|
|
|
|
self, *, workflow_execution_id: str, event: QueueNodeRetryEvent
|
|
|
|
|
) -> WorkflowNodeExecution:
|
|
|
|
|
workflow_execution = self._get_workflow_execution_or_raise_error(workflow_execution_id)
|
|
|
|
|
created_at = event.start_at
|
|
|
|
|
finished_at = datetime.now(UTC).replace(tzinfo=None)
|
|
|
|
|
elapsed_time = (finished_at - created_at).total_seconds()
|
|
|
|
|
|
|
|
|
|
domain_execution = self._create_node_execution_from_event(
|
|
|
|
|
workflow_execution=workflow_execution,
|
|
|
|
|
event=event,
|
|
|
|
|
status=WorkflowNodeExecutionStatus.RETRY,
|
|
|
|
|
error=event.error,
|
|
|
|
|
created_at=event.start_at,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# Handle inputs and outputs
|
|
|
|
|
inputs = WorkflowEntry.handle_special_values(event.inputs)
|
|
|
|
|
outputs = event.outputs
|
|
|
|
|
metadata = self._merge_event_metadata(event)
|
|
|
|
|
|
|
|
|
|
# Convert metadata keys to strings
|
|
|
|
|
origin_metadata = {
|
|
|
|
|
WorkflowNodeExecutionMetadataKey.ITERATION_ID: event.in_iteration_id,
|
|
|
|
|
domain_execution.update_from_mapping(inputs=inputs, outputs=outputs, metadata=metadata)
|
|
|
|
|
|
|
|
|
|
return self._save_and_cache_node_execution(domain_execution)
|
|
|
|
|
|
|
|
|
|
def _get_workflow_execution_or_raise_error(self, id: str, /) -> WorkflowExecution:
|
|
|
|
|
# Check cache first
|
|
|
|
|
if id in self._workflow_execution_cache:
|
|
|
|
|
return self._workflow_execution_cache[id]
|
|
|
|
|
|
|
|
|
|
raise WorkflowRunNotFoundError(id)
|
|
|
|
|
|
|
|
|
|
def _prepare_workflow_inputs(self) -> dict[str, Any]:
|
|
|
|
|
"""Prepare workflow inputs by merging application inputs with system variables."""
|
|
|
|
|
inputs = {**self._application_generate_entity.inputs}
|
|
|
|
|
|
|
|
|
|
if self._workflow_system_variables:
|
|
|
|
|
for field_name, value in self._workflow_system_variables.to_dict().items():
|
|
|
|
|
if field_name != SystemVariableKey.CONVERSATION_ID:
|
|
|
|
|
inputs[f"sys.{field_name}"] = value
|
|
|
|
|
|
|
|
|
|
return dict(WorkflowEntry.handle_special_values(inputs) or {})
|
|
|
|
|
|
|
|
|
|
def _get_or_generate_execution_id(self) -> str:
|
|
|
|
|
"""Get execution ID from system variables or generate a new one."""
|
|
|
|
|
if self._workflow_system_variables and self._workflow_system_variables.workflow_execution_id:
|
|
|
|
|
return str(self._workflow_system_variables.workflow_execution_id)
|
|
|
|
|
return str(uuid4())
|
|
|
|
|
|
|
|
|
|
def _save_and_cache_workflow_execution(self, execution: WorkflowExecution) -> WorkflowExecution:
|
|
|
|
|
"""Save workflow execution to repository and cache it."""
|
|
|
|
|
self._workflow_execution_repository.save(execution)
|
|
|
|
|
self._workflow_execution_cache[execution.id_] = execution
|
|
|
|
|
return execution
|
|
|
|
|
|
|
|
|
|
def _save_and_cache_node_execution(self, execution: WorkflowNodeExecution) -> WorkflowNodeExecution:
|
|
|
|
|
"""Save node execution to repository and cache it if it has an ID."""
|
|
|
|
|
self._workflow_node_execution_repository.save(execution)
|
|
|
|
|
if execution.node_execution_id:
|
|
|
|
|
self._node_execution_cache[execution.node_execution_id] = execution
|
|
|
|
|
return execution
|
|
|
|
|
|
|
|
|
|
def _get_node_execution_from_cache(self, node_execution_id: str) -> WorkflowNodeExecution:
|
|
|
|
|
"""Get node execution from cache or raise error if not found."""
|
|
|
|
|
domain_execution = self._node_execution_cache.get(node_execution_id)
|
|
|
|
|
if not domain_execution:
|
|
|
|
|
raise ValueError(f"Domain node execution not found: {node_execution_id}")
|
|
|
|
|
return domain_execution
|
|
|
|
|
|
|
|
|
|
def _update_workflow_execution_completion(
|
|
|
|
|
self,
|
|
|
|
|
execution: WorkflowExecution,
|
|
|
|
|
*,
|
|
|
|
|
status: WorkflowExecutionStatus,
|
|
|
|
|
total_tokens: int,
|
|
|
|
|
total_steps: int,
|
|
|
|
|
outputs: Mapping[str, Any] | None = None,
|
|
|
|
|
error_message: Optional[str] = None,
|
|
|
|
|
exceptions_count: int = 0,
|
|
|
|
|
finished_at: Optional[datetime] = None,
|
|
|
|
|
) -> None:
|
|
|
|
|
"""Update workflow execution with completion data."""
|
|
|
|
|
execution.status = status
|
|
|
|
|
execution.outputs = outputs or {}
|
|
|
|
|
execution.total_tokens = total_tokens
|
|
|
|
|
execution.total_steps = total_steps
|
|
|
|
|
execution.finished_at = finished_at or naive_utc_now()
|
|
|
|
|
execution.exceptions_count = exceptions_count
|
|
|
|
|
if error_message:
|
|
|
|
|
execution.error_message = error_message
|
|
|
|
|
|
|
|
|
|
def _add_trace_task_if_needed(
|
|
|
|
|
self,
|
|
|
|
|
trace_manager: Optional[TraceQueueManager],
|
|
|
|
|
workflow_execution: WorkflowExecution,
|
|
|
|
|
conversation_id: Optional[str],
|
|
|
|
|
) -> None:
|
|
|
|
|
"""Add trace task if trace manager is provided."""
|
|
|
|
|
if trace_manager:
|
|
|
|
|
trace_manager.add_trace_task(
|
|
|
|
|
TraceTask(
|
|
|
|
|
TraceTaskName.WORKFLOW_TRACE,
|
|
|
|
|
workflow_execution=workflow_execution,
|
|
|
|
|
conversation_id=conversation_id,
|
|
|
|
|
user_id=trace_manager.user_id,
|
|
|
|
|
)
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
def _fail_running_node_executions(
|
|
|
|
|
self,
|
|
|
|
|
workflow_execution_id: str,
|
|
|
|
|
error_message: str,
|
|
|
|
|
now: datetime,
|
|
|
|
|
) -> None:
|
|
|
|
|
"""Fail all running node executions for a workflow."""
|
|
|
|
|
running_node_executions = [
|
|
|
|
|
node_exec
|
|
|
|
|
for node_exec in self._node_execution_cache.values()
|
|
|
|
|
if node_exec.workflow_execution_id == workflow_execution_id
|
|
|
|
|
and node_exec.status == WorkflowNodeExecutionStatus.RUNNING
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
for node_execution in running_node_executions:
|
|
|
|
|
if node_execution.node_execution_id:
|
|
|
|
|
node_execution.status = WorkflowNodeExecutionStatus.FAILED
|
|
|
|
|
node_execution.error = error_message
|
|
|
|
|
node_execution.finished_at = now
|
|
|
|
|
node_execution.elapsed_time = (now - node_execution.created_at).total_seconds()
|
|
|
|
|
self._workflow_node_execution_repository.save(node_execution)
|
|
|
|
|
|
|
|
|
|
def _create_node_execution_from_event(
|
|
|
|
|
self,
|
|
|
|
|
*,
|
|
|
|
|
workflow_execution: WorkflowExecution,
|
|
|
|
|
event: Union[QueueNodeStartedEvent, QueueNodeRetryEvent],
|
|
|
|
|
status: WorkflowNodeExecutionStatus,
|
|
|
|
|
error: Optional[str] = None,
|
|
|
|
|
created_at: Optional[datetime] = None,
|
|
|
|
|
) -> WorkflowNodeExecution:
|
|
|
|
|
"""Create a node execution from an event."""
|
|
|
|
|
now = datetime.now(UTC).replace(tzinfo=None)
|
|
|
|
|
created_at = created_at or now
|
|
|
|
|
|
|
|
|
|
metadata = {
|
|
|
|
|
WorkflowNodeExecutionMetadataKey.PARALLEL_MODE_RUN_ID: event.parallel_mode_run_id,
|
|
|
|
|
WorkflowNodeExecutionMetadataKey.ITERATION_ID: event.in_iteration_id,
|
|
|
|
|
WorkflowNodeExecutionMetadataKey.LOOP_ID: event.in_loop_id,
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
# Convert execution metadata keys to strings
|
|
|
|
|
execution_metadata_dict: dict[WorkflowNodeExecutionMetadataKey, str | None] = {}
|
|
|
|
|
if event.execution_metadata:
|
|
|
|
|
for key, value in event.execution_metadata.items():
|
|
|
|
|
execution_metadata_dict[key] = value
|
|
|
|
|
|
|
|
|
|
merged_metadata = {**execution_metadata_dict, **origin_metadata} if execution_metadata_dict else origin_metadata
|
|
|
|
|
|
|
|
|
|
# Create a domain model
|
|
|
|
|
domain_execution = WorkflowNodeExecution(
|
|
|
|
|
id=str(uuid4()),
|
|
|
|
|
workflow_id=workflow_execution.workflow_id,
|
|
|
|
|
workflow_execution_id=workflow_execution.id_,
|
|
|
|
|
predecessor_node_id=event.predecessor_node_id,
|
|
|
|
|
index=event.node_run_index,
|
|
|
|
|
node_execution_id=event.node_execution_id,
|
|
|
|
|
node_id=event.node_id,
|
|
|
|
|
node_type=event.node_type,
|
|
|
|
|
title=event.node_data.title,
|
|
|
|
|
status=WorkflowNodeExecutionStatus.RETRY,
|
|
|
|
|
status=status,
|
|
|
|
|
metadata=metadata,
|
|
|
|
|
created_at=created_at,
|
|
|
|
|
finished_at=finished_at,
|
|
|
|
|
elapsed_time=elapsed_time,
|
|
|
|
|
error=event.error,
|
|
|
|
|
index=event.node_run_index,
|
|
|
|
|
error=error,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# Update with mappings
|
|
|
|
|
domain_execution.update_from_mapping(inputs=inputs, outputs=outputs, metadata=merged_metadata)
|
|
|
|
|
|
|
|
|
|
# Use the instance repository to save the domain model
|
|
|
|
|
self._workflow_node_execution_repository.save(domain_execution)
|
|
|
|
|
if status == WorkflowNodeExecutionStatus.RETRY:
|
|
|
|
|
domain_execution.finished_at = now
|
|
|
|
|
domain_execution.elapsed_time = (now - created_at).total_seconds()
|
|
|
|
|
|
|
|
|
|
return domain_execution
|
|
|
|
|
|
|
|
|
|
def _get_workflow_execution_or_raise_error(self, id: str, /) -> WorkflowExecution:
|
|
|
|
|
execution = self._workflow_execution_repository.get(id)
|
|
|
|
|
if not execution:
|
|
|
|
|
raise WorkflowRunNotFoundError(id)
|
|
|
|
|
return execution
|
|
|
|
|
def _update_node_execution_completion(
|
|
|
|
|
self,
|
|
|
|
|
domain_execution: WorkflowNodeExecution,
|
|
|
|
|
*,
|
|
|
|
|
event: Union[
|
|
|
|
|
QueueNodeSucceededEvent,
|
|
|
|
|
QueueNodeFailedEvent,
|
|
|
|
|
QueueNodeInIterationFailedEvent,
|
|
|
|
|
QueueNodeInLoopFailedEvent,
|
|
|
|
|
QueueNodeExceptionEvent,
|
|
|
|
|
],
|
|
|
|
|
status: WorkflowNodeExecutionStatus,
|
|
|
|
|
error: Optional[str] = None,
|
|
|
|
|
handle_special_values: bool = False,
|
|
|
|
|
) -> None:
|
|
|
|
|
"""Update node execution with completion data."""
|
|
|
|
|
finished_at = datetime.now(UTC).replace(tzinfo=None)
|
|
|
|
|
elapsed_time = (finished_at - event.start_at).total_seconds()
|
|
|
|
|
|
|
|
|
|
# Process data
|
|
|
|
|
if handle_special_values:
|
|
|
|
|
inputs = WorkflowEntry.handle_special_values(event.inputs)
|
|
|
|
|
process_data = WorkflowEntry.handle_special_values(event.process_data)
|
|
|
|
|
else:
|
|
|
|
|
inputs = event.inputs
|
|
|
|
|
process_data = event.process_data
|
|
|
|
|
|
|
|
|
|
outputs = event.outputs
|
|
|
|
|
|
|
|
|
|
# Convert metadata
|
|
|
|
|
execution_metadata_dict: dict[WorkflowNodeExecutionMetadataKey, Any] = {}
|
|
|
|
|
if event.execution_metadata:
|
|
|
|
|
execution_metadata_dict.update(event.execution_metadata)
|
|
|
|
|
|
|
|
|
|
# Update domain model
|
|
|
|
|
domain_execution.status = status
|
|
|
|
|
domain_execution.update_from_mapping(
|
|
|
|
|
inputs=inputs,
|
|
|
|
|
process_data=process_data,
|
|
|
|
|
outputs=outputs,
|
|
|
|
|
metadata=execution_metadata_dict,
|
|
|
|
|
)
|
|
|
|
|
domain_execution.finished_at = finished_at
|
|
|
|
|
domain_execution.elapsed_time = elapsed_time
|
|
|
|
|
|
|
|
|
|
if error:
|
|
|
|
|
domain_execution.error = error
|
|
|
|
|
|
|
|
|
|
def _merge_event_metadata(self, event: QueueNodeRetryEvent) -> dict[WorkflowNodeExecutionMetadataKey, str | None]:
|
|
|
|
|
"""Merge event metadata with origin metadata."""
|
|
|
|
|
origin_metadata = {
|
|
|
|
|
WorkflowNodeExecutionMetadataKey.ITERATION_ID: event.in_iteration_id,
|
|
|
|
|
WorkflowNodeExecutionMetadataKey.PARALLEL_MODE_RUN_ID: event.parallel_mode_run_id,
|
|
|
|
|
WorkflowNodeExecutionMetadataKey.LOOP_ID: event.in_loop_id,
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
execution_metadata_dict: dict[WorkflowNodeExecutionMetadataKey, str | None] = {}
|
|
|
|
|
if event.execution_metadata:
|
|
|
|
|
execution_metadata_dict.update(event.execution_metadata)
|
|
|
|
|
|
|
|
|
|
return {**execution_metadata_dict, **origin_metadata} if execution_metadata_dict else origin_metadata
|
|
|
|
|
|