|
|
|
|
@ -1,15 +1,18 @@
|
|
|
|
|
import json
|
|
|
|
|
from collections.abc import Generator, Mapping, Sequence
|
|
|
|
|
from typing import Any, cast
|
|
|
|
|
from typing import Any, Optional, cast
|
|
|
|
|
|
|
|
|
|
from core.agent.entities import AgentToolEntity
|
|
|
|
|
from core.agent.plugin_entities import AgentStrategyParameter
|
|
|
|
|
from core.model_manager import ModelManager
|
|
|
|
|
from core.model_runtime.entities.model_entities import ModelType
|
|
|
|
|
from core.memory.token_buffer_memory import TokenBufferMemory
|
|
|
|
|
from core.model_manager import ModelInstance, ModelManager
|
|
|
|
|
from core.model_runtime.entities.model_entities import AIModelEntity, ModelType
|
|
|
|
|
from core.plugin.manager.exc import PluginDaemonClientSideError
|
|
|
|
|
from core.plugin.manager.plugin import PluginInstallationManager
|
|
|
|
|
from core.provider_manager import ProviderManager
|
|
|
|
|
from core.tools.entities.tool_entities import ToolParameter, ToolProviderType
|
|
|
|
|
from core.tools.tool_manager import ToolManager
|
|
|
|
|
from core.variables.segments import StringSegment
|
|
|
|
|
from core.workflow.entities.node_entities import NodeRunResult
|
|
|
|
|
from core.workflow.entities.variable_pool import VariablePool
|
|
|
|
|
from core.workflow.enums import SystemVariableKey
|
|
|
|
|
@ -19,7 +22,9 @@ from core.workflow.nodes.enums import NodeType
|
|
|
|
|
from core.workflow.nodes.event.event import RunCompletedEvent
|
|
|
|
|
from core.workflow.nodes.tool.tool_node import ToolNode
|
|
|
|
|
from core.workflow.utils.variable_template_parser import VariableTemplateParser
|
|
|
|
|
from extensions.ext_database import db
|
|
|
|
|
from factories.agent_factory import get_plugin_agent_strategy
|
|
|
|
|
from models.model import Conversation
|
|
|
|
|
from models.workflow import WorkflowNodeExecutionStatus
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -233,17 +238,20 @@ class AgentNode(ToolNode):
|
|
|
|
|
value = tool_value
|
|
|
|
|
if parameter.type == "model-selector":
|
|
|
|
|
value = cast(dict[str, Any], value)
|
|
|
|
|
model_instance = ModelManager().get_model_instance(
|
|
|
|
|
tenant_id=self.tenant_id,
|
|
|
|
|
provider=value.get("provider", ""),
|
|
|
|
|
model_type=ModelType(value.get("model_type", "")),
|
|
|
|
|
model=value.get("model", ""),
|
|
|
|
|
)
|
|
|
|
|
models = model_instance.model_type_instance.plugin_model_provider.declaration.models
|
|
|
|
|
finded_model = next((model for model in models if model.model == value.get("model", "")), None)
|
|
|
|
|
|
|
|
|
|
value["entity"] = finded_model.model_dump(mode="json") if finded_model else None
|
|
|
|
|
|
|
|
|
|
model_instance, model_schema = self._fetch_model(value)
|
|
|
|
|
# memory config
|
|
|
|
|
history_prompt_messages = []
|
|
|
|
|
if node_data.memory:
|
|
|
|
|
memory = self._fetch_memory(model_instance)
|
|
|
|
|
if memory:
|
|
|
|
|
prompt_messages = memory.get_history_prompt_messages(
|
|
|
|
|
message_limit=node_data.memory.window.size if node_data.memory.window.size else None
|
|
|
|
|
)
|
|
|
|
|
history_prompt_messages = [
|
|
|
|
|
prompt_message.model_dump(mode="json") for prompt_message in prompt_messages
|
|
|
|
|
]
|
|
|
|
|
value["history_prompt_messages"] = history_prompt_messages
|
|
|
|
|
value["entity"] = model_schema.model_dump(mode="json") if model_schema else None
|
|
|
|
|
result[parameter_name] = value
|
|
|
|
|
|
|
|
|
|
return result
|
|
|
|
|
@ -297,3 +305,46 @@ class AgentNode(ToolNode):
|
|
|
|
|
except StopIteration:
|
|
|
|
|
icon = None
|
|
|
|
|
return icon
|
|
|
|
|
|
|
|
|
|
def _fetch_memory(self, model_instance: ModelInstance) -> Optional[TokenBufferMemory]:
|
|
|
|
|
# get conversation id
|
|
|
|
|
conversation_id_variable = self.graph_runtime_state.variable_pool.get(
|
|
|
|
|
["sys", SystemVariableKey.CONVERSATION_ID.value]
|
|
|
|
|
)
|
|
|
|
|
if not isinstance(conversation_id_variable, StringSegment):
|
|
|
|
|
return None
|
|
|
|
|
conversation_id = conversation_id_variable.value
|
|
|
|
|
|
|
|
|
|
# get conversation
|
|
|
|
|
conversation = (
|
|
|
|
|
db.session.query(Conversation)
|
|
|
|
|
.filter(Conversation.app_id == self.app_id, Conversation.id == conversation_id)
|
|
|
|
|
.first()
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
if not conversation:
|
|
|
|
|
return None
|
|
|
|
|
|
|
|
|
|
memory = TokenBufferMemory(conversation=conversation, model_instance=model_instance)
|
|
|
|
|
|
|
|
|
|
return memory
|
|
|
|
|
|
|
|
|
|
def _fetch_model(self, value: dict[str, Any]) -> tuple[ModelInstance, AIModelEntity | None]:
|
|
|
|
|
provider_manager = ProviderManager()
|
|
|
|
|
provider_model_bundle = provider_manager.get_provider_model_bundle(
|
|
|
|
|
tenant_id=self.tenant_id, provider=value.get("provider", ""), model_type=ModelType.LLM
|
|
|
|
|
)
|
|
|
|
|
model_name = value.get("model", "")
|
|
|
|
|
model_credentials = provider_model_bundle.configuration.get_current_credentials(
|
|
|
|
|
model_type=ModelType.LLM, model=model_name
|
|
|
|
|
)
|
|
|
|
|
provider_name = provider_model_bundle.configuration.provider.provider
|
|
|
|
|
model_type_instance = provider_model_bundle.model_type_instance
|
|
|
|
|
model_instance = ModelManager().get_model_instance(
|
|
|
|
|
tenant_id=self.tenant_id,
|
|
|
|
|
provider=provider_name,
|
|
|
|
|
model_type=ModelType(value.get("model_type", "")),
|
|
|
|
|
model=model_name,
|
|
|
|
|
)
|
|
|
|
|
model_schema = model_type_instance.get_model_schema(model_name, model_credentials)
|
|
|
|
|
return model_instance, model_schema
|
|
|
|
|
|