Feat/huggingface embedding support (#1211)
Co-authored-by: StyleZhang <jasonapring2015@outlook.com>pull/1216/head
parent
32d9b6181c
commit
e409895c02
@ -0,0 +1,22 @@
|
||||
from core.model_providers.error import LLMBadRequestError
|
||||
from core.model_providers.providers.base import BaseModelProvider
|
||||
from core.third_party.langchain.embeddings.huggingface_hub_embedding import HuggingfaceHubEmbeddings
|
||||
from core.model_providers.models.embedding.base import BaseEmbedding
|
||||
|
||||
|
||||
class HuggingfaceEmbedding(BaseEmbedding):
|
||||
def __init__(self, model_provider: BaseModelProvider, name: str):
|
||||
credentials = model_provider.get_model_credentials(
|
||||
model_name=name,
|
||||
model_type=self.type
|
||||
)
|
||||
|
||||
client = HuggingfaceHubEmbeddings(
|
||||
model=name,
|
||||
**credentials
|
||||
)
|
||||
|
||||
super().__init__(model_provider, client, name)
|
||||
|
||||
def handle_exceptions(self, ex: Exception) -> Exception:
|
||||
return LLMBadRequestError(f"Huggingface embedding: {str(ex)}")
|
||||
@ -0,0 +1,74 @@
|
||||
from typing import Any, Dict, List, Optional
|
||||
import json
|
||||
import numpy as np
|
||||
|
||||
from pydantic import BaseModel, Extra, root_validator
|
||||
|
||||
from langchain.embeddings.base import Embeddings
|
||||
from langchain.utils import get_from_dict_or_env
|
||||
from huggingface_hub import InferenceClient
|
||||
|
||||
HOSTED_INFERENCE_API = 'hosted_inference_api'
|
||||
INFERENCE_ENDPOINTS = 'inference_endpoints'
|
||||
|
||||
|
||||
class HuggingfaceHubEmbeddings(BaseModel, Embeddings):
|
||||
client: Any
|
||||
model: str
|
||||
|
||||
huggingface_namespace: Optional[str] = None
|
||||
task_type: Optional[str] = None
|
||||
huggingfacehub_api_type: Optional[str] = None
|
||||
huggingfacehub_api_token: Optional[str] = None
|
||||
huggingfacehub_endpoint_url: Optional[str] = None
|
||||
|
||||
class Config:
|
||||
extra = Extra.forbid
|
||||
|
||||
@root_validator()
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
values['huggingfacehub_api_token'] = get_from_dict_or_env(
|
||||
values, "huggingfacehub_api_token", "HUGGINGFACEHUB_API_TOKEN"
|
||||
)
|
||||
|
||||
values['client'] = InferenceClient(token=values['huggingfacehub_api_token'])
|
||||
|
||||
return values
|
||||
|
||||
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||
model = ''
|
||||
|
||||
if self.huggingfacehub_api_type == HOSTED_INFERENCE_API:
|
||||
model = self.model
|
||||
else:
|
||||
model = self.huggingfacehub_endpoint_url
|
||||
|
||||
output = self.client.post(
|
||||
json={
|
||||
"inputs": texts,
|
||||
"options": {
|
||||
"wait_for_model": False,
|
||||
"use_cache": False
|
||||
}
|
||||
}, model=model)
|
||||
|
||||
embeddings = json.loads(output.decode())
|
||||
return self.mean_pooling(embeddings)
|
||||
|
||||
def embed_query(self, text: str) -> List[float]:
|
||||
return self.embed_documents([text])[0]
|
||||
|
||||
# https://huggingface.co/docs/api-inference/detailed_parameters#feature-extraction-task
|
||||
# Returned values are a list of floats, or a list of list of floats
|
||||
# (depending on if you sent a string or a list of string,
|
||||
# and if the automatic reduction, usually mean_pooling for instance was applied for you or not.
|
||||
# This should be explained on the model's README.)
|
||||
def mean_pooling(self, embeddings: List) -> List[float]:
|
||||
# If automatic reduction by giving model, no need to mean_pooling.
|
||||
# For example one: List[List[float]]
|
||||
if not isinstance(embeddings[0][0], list):
|
||||
return embeddings
|
||||
|
||||
# For example two: List[List[List[float]]], need to mean_pooling.
|
||||
sentence_embeddings = [np.mean(embedding[0], axis=0).tolist() for embedding in embeddings]
|
||||
return sentence_embeddings
|
||||
@ -0,0 +1,136 @@
|
||||
import json
|
||||
import os
|
||||
from unittest.mock import patch, MagicMock
|
||||
|
||||
from core.model_providers.models.entity.model_params import ModelType
|
||||
from core.model_providers.models.embedding.huggingface_embedding import HuggingfaceEmbedding
|
||||
from core.model_providers.providers.huggingface_hub_provider import HuggingfaceHubProvider
|
||||
from models.provider import Provider, ProviderType, ProviderModel
|
||||
|
||||
DEFAULT_MODEL_NAME = 'obrizum/all-MiniLM-L6-v2'
|
||||
|
||||
def get_mock_provider():
|
||||
return Provider(
|
||||
id='provider_id',
|
||||
tenant_id='tenant_id',
|
||||
provider_name='huggingface_hub',
|
||||
provider_type=ProviderType.CUSTOM.value,
|
||||
encrypted_config='',
|
||||
is_valid=True,
|
||||
)
|
||||
|
||||
|
||||
def get_mock_embedding_model(model_name, huggingfacehub_api_type, mocker):
|
||||
valid_api_key = os.environ['HUGGINGFACE_API_KEY']
|
||||
endpoint_url = os.environ['HUGGINGFACE_EMBEDDINGS_ENDPOINT_URL']
|
||||
model_provider = HuggingfaceHubProvider(provider=get_mock_provider())
|
||||
|
||||
credentials = {
|
||||
'huggingfacehub_api_type': huggingfacehub_api_type,
|
||||
'huggingfacehub_api_token': valid_api_key,
|
||||
'task_type': 'feature-extraction'
|
||||
}
|
||||
|
||||
if huggingfacehub_api_type == 'inference_endpoints':
|
||||
credentials['huggingfacehub_endpoint_url'] = endpoint_url
|
||||
|
||||
mock_query = MagicMock()
|
||||
mock_query.filter.return_value.first.return_value = ProviderModel(
|
||||
provider_name='huggingface_hub',
|
||||
model_name=model_name,
|
||||
model_type=ModelType.EMBEDDINGS.value,
|
||||
encrypted_config=json.dumps(credentials),
|
||||
is_valid=True,
|
||||
)
|
||||
mocker.patch('extensions.ext_database.db.session.query',
|
||||
return_value=mock_query)
|
||||
|
||||
return HuggingfaceEmbedding(
|
||||
model_provider=model_provider,
|
||||
name=model_name
|
||||
)
|
||||
|
||||
|
||||
def decrypt_side_effect(tenant_id, encrypted_api_key):
|
||||
return encrypted_api_key
|
||||
|
||||
|
||||
@patch('core.helper.encrypter.decrypt_token', side_effect=decrypt_side_effect)
|
||||
def test_hosted_inference_api_embed_documents(mock_decrypt, mocker):
|
||||
embedding_model = get_mock_embedding_model(
|
||||
DEFAULT_MODEL_NAME,
|
||||
'hosted_inference_api',
|
||||
mocker)
|
||||
rst = embedding_model.client.embed_documents(['test', 'test1'])
|
||||
assert isinstance(rst, list)
|
||||
assert len(rst) == 2
|
||||
assert len(rst[0]) == 384
|
||||
|
||||
|
||||
@patch('core.helper.encrypter.decrypt_token', side_effect=decrypt_side_effect)
|
||||
def test_endpoint_url_inference_api_embed_documents(mock_decrypt, mocker):
|
||||
embedding_model = get_mock_embedding_model(
|
||||
'',
|
||||
'inference_endpoints',
|
||||
mocker)
|
||||
mocker.patch('core.third_party.langchain.embeddings.huggingface_hub_embedding.InferenceClient.post'
|
||||
, return_value=bytes(json.dumps([[1, 2, 3], [4, 5, 6]]), 'utf-8'))
|
||||
|
||||
rst = embedding_model.client.embed_documents(['test', 'test1'])
|
||||
assert isinstance(rst, list)
|
||||
assert len(rst) == 2
|
||||
assert len(rst[0]) == 3
|
||||
|
||||
@patch('core.helper.encrypter.decrypt_token', side_effect=decrypt_side_effect)
|
||||
def test_endpoint_url_inference_api_embed_documents_two(mock_decrypt, mocker):
|
||||
embedding_model = get_mock_embedding_model(
|
||||
'',
|
||||
'inference_endpoints',
|
||||
mocker)
|
||||
mocker.patch('core.third_party.langchain.embeddings.huggingface_hub_embedding.InferenceClient.post'
|
||||
, return_value=bytes(json.dumps([[[[1,2,3],[4,5,6],[7,8,9]]],[[[1,2,3],[4,5,6],[7,8,9]]]]), 'utf-8'))
|
||||
|
||||
rst = embedding_model.client.embed_documents(['test', 'test1'])
|
||||
assert isinstance(rst, list)
|
||||
assert len(rst) == 2
|
||||
assert len(rst[0]) == 3
|
||||
|
||||
|
||||
@patch('core.helper.encrypter.decrypt_token', side_effect=decrypt_side_effect)
|
||||
def test_hosted_inference_api_embed_query(mock_decrypt, mocker):
|
||||
embedding_model = get_mock_embedding_model(
|
||||
DEFAULT_MODEL_NAME,
|
||||
'hosted_inference_api',
|
||||
mocker)
|
||||
rst = embedding_model.client.embed_query('test')
|
||||
assert isinstance(rst, list)
|
||||
assert len(rst) == 384
|
||||
|
||||
|
||||
@patch('core.helper.encrypter.decrypt_token', side_effect=decrypt_side_effect)
|
||||
def test_endpoint_url_inference_api_embed_query(mock_decrypt, mocker):
|
||||
embedding_model = get_mock_embedding_model(
|
||||
'',
|
||||
'inference_endpoints',
|
||||
mocker)
|
||||
|
||||
mocker.patch('core.third_party.langchain.embeddings.huggingface_hub_embedding.InferenceClient.post'
|
||||
, return_value=bytes(json.dumps([[1, 2, 3]]), 'utf-8'))
|
||||
|
||||
rst = embedding_model.client.embed_query('test')
|
||||
assert isinstance(rst, list)
|
||||
assert len(rst) == 3
|
||||
|
||||
@patch('core.helper.encrypter.decrypt_token', side_effect=decrypt_side_effect)
|
||||
def test_endpoint_url_inference_api_embed_query_two(mock_decrypt, mocker):
|
||||
embedding_model = get_mock_embedding_model(
|
||||
'',
|
||||
'inference_endpoints',
|
||||
mocker)
|
||||
|
||||
mocker.patch('core.third_party.langchain.embeddings.huggingface_hub_embedding.InferenceClient.post'
|
||||
, return_value=bytes(json.dumps([[[[1,2,3],[4,5,6],[7,8,9]]]]), 'utf-8'))
|
||||
|
||||
rst = embedding_model.client.embed_query('test')
|
||||
assert isinstance(rst, list)
|
||||
assert len(rst) == 3
|
||||
Loading…
Reference in New Issue