You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
gcgj-dify-1.7.0/api
方程 99b0369f1b
Gitee AI embedding tool (#10903)
1 year ago
..
.idea
.vscode
configs ext_redis.py support redis clusters --- Fixes #9538 (#9789) 1 year ago
constants Feat/add Slovensko (Slovenija) (#10731) 1 year ago
contexts
controllers fix: download some remote files raise error (#10781) 1 year ago
core Gitee AI embedding tool (#10903) 1 year ago
docker fix: remove unused queue `generation` (#10532) 1 year ago
events
extensions ext_redis.py support redis clusters --- Fixes #9538 (#9789) 1 year ago
factories Fix : Add a process to fetch the mime type from the file name for signed url in remote_url (#10872) 1 year ago
fields Conversation delete issue (#10423) 1 year ago
libs chore(lint): cleanup repeated cause exception in logging.exception replaced by helpful message (#10425) 1 year ago
migrations Feat/clean message records (#10588) 1 year ago
models Fix: crash of workflow file upload (#10831) 1 year ago
schedule Feat/clean message records (#10588) 1 year ago
services Feat/account not found (#10804) 1 year ago
tasks chore(lint): cleanup repeated cause exception in logging.exception replaced by helpful message (#10425) 1 year ago
templates
tests ext_redis.py support redis clusters --- Fixes #9538 (#9789) 1 year ago
.dockerignore
.env.example ext_redis.py support redis clusters --- Fixes #9538 (#9789) 1 year ago
Dockerfile Update expat version (#10686) 1 year ago
README.md chore(ci): bring back poetry cache to speed up CI jobs (#10347) 1 year ago
app.py chore(api): remove setting of expired remember_token cookie in after_request (#10582) 1 year ago
app_factory.py fix: (#10437 followup) fix conditions with DEBUG config (#10438) 1 year ago
commands.py chore(lint): cleanup repeated cause exception in logging.exception replaced by helpful message (#10425) 1 year ago
poetry.lock Add youtube-transcript-api as tool (#10772) 1 year ago
poetry.toml
pyproject.toml Add youtube-transcript-api as tool (#10772) 1 year ago
pytest.ini feat: add models for gitee.ai (#9490) 1 year ago

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

    The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

    cd ../docker
    cp middleware.env.example middleware.env
    # change the profile to other vector database if you are not using weaviate
    docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
    cd ../api
    
  2. Copy .env.example to .env

  3. Generate a SECRET_KEY in the .env file.

    sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
    
    secret_key=$(openssl rand -base64 42)
    sed -i '' "/^SECRET_KEY=/c\\
    SECRET_KEY=${secret_key}" .env
    
  4. Create environment.

    Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  5. Install dependencies

    poetry env use 3.10
    poetry install
    

    In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

    poetry shell                                               # activate current environment
    poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
    poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
    
  6. Run migrate

    Before the first launch, migrate the database to the latest version.

    poetry run python -m flask db upgrade
    
  7. Start backend

    poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
    
  8. Start Dify web service.

  9. Setup your application by visiting http://localhost:3000...

  10. If you need to handle and debug the async tasks (e.g. dataset importing and documents indexing), please start the worker service.

poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion

Testing

  1. Install dependencies for both the backend and the test environment

    poetry install -C api --with dev
    
  2. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml

    poetry run -C api bash dev/pytest/pytest_all_tests.sh