init: 初始化仓库

main
chenzhirong 4 months ago
commit a33c6c168b

14
.gitignore vendored

@ -0,0 +1,14 @@
.vscode
# Pyre type checker
.pyre/
.idea/'
.DS_Store
# Intellij IDEA Files
.idea/*
!.idea/vcs.xml
!.idea/icon.png
.ideaDataSources/
*.iml

@ -0,0 +1,6 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="VcsDirectoryMappings">
<mapping directory="$PROJECT_DIR$" vcs="Git" />
</component>
</project>

@ -0,0 +1,19 @@
FROM ubuntu:20.04
WORKDIR /root
COPY run.sh .
RUN apt update && apt install -y python3-pip git wget
RUN pip install --upgrade pip
RUN git clone --depth 1 https://github.com/naurril/SUSTechPOINTS.git
RUN cd SUSTechPOINTS && \
wget https://github.com/naurril/SUSTechPOINTS/releases/download/0.1/deep_annotation_inference.h5 -P algos/models && \
python3 -m pip install -r ./requirement.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
ENTRYPOINT ["/root/run.sh"]
EXPOSE 8081

@ -0,0 +1,3 @@
#!/usr/bin/env bash
cd /root/SUSTechPOINTS && python3 ./main.py

@ -0,0 +1,674 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<https://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<https://www.gnu.org/licenses/why-not-lgpl.html>.

@ -0,0 +1,208 @@
# SUSTechPOINTS: 3D Point Cloud Annotation Tool
![screenshot](./doc/screenshot.png)
## 项目启动
```shell
uv sync
uv run mian.py
```
## UI说明
### 屏幕左上区域
![screenshot](./doc/header.png)
Scene选择
Frame选择
目标id选择(试验用会启动batchedit模式,显示该物体的多个实例)
相机选择 在不同相机间切换,选择3dbox时也会自动切换
Box信息
*(表示已更改未保存) 类别-ID |距离| x y z | 长宽高 | roll pitch yaw | 点数 |F:n(follow obj n)
### 配置菜单(右上角)
![screenshot](./doc/view-menu.png)
- point size 增加/减小点的大小
- point brightness 增强/减弱点的亮度
- hide box 隐藏3dbox
- theme 暗/亮模式选择
- color objects 目标着色方案按id/类别,无色
- batch mode max box number: 批编辑模式下显示的实例个数
- data settings: 是否显示雷达数据
- experimental 实验标定用
- take screenshot 下载屏幕截图(仅3D场景)
- Help
### 相机图片
拖动图片的右下角可以调整大小, 选择不同的相机会显示不同图片.
### 输出窗口
右下角窗口会输出运行信息, 可以点击标题栏隐藏/显示.
![screenshot](./doc/output-window.png)
### 右键菜单
右键点击空白区域
![screenshot](./doc/contextmenu.png)
- New 在鼠标当前位置创建对应的box
- Paste 在鼠标当前位置paste
- goto
- play
- pause/resume
- stop
-
- save 保存
- save all
- reload 放弃当前修改刷新上一次保存的内容
- reload all
- frame info
- stat
右键点击box
![screenshot](./doc/contextmenu-obj.png)
- delete 删除该box
- delete other instance 删除其他fram里该object的box
- sync object type 其它frame中该物体的类型设置为当前box的类型
- sync object size 其它frame中该物体的大小设置为当前box的类型
- inspect all instances 唤起批量标注界面
- select as ref 选择当前box为参考box (同copy)
- follows ref 设置当前box为跟随参考box(即相对位置固定)
- sync followers 将所有跟随当前box的物体标注出来
(该菜单部分功能处于试验状态,尚不完善.)
## 操作
### 调整视角
在主窗口里可以通过鼠标左键旋转, 右键移动, 滚轮缩放视角.
### 新加Box
方法1: 鼠标移动到目标物体上, 右键选择new-物体种类, 会自动生成box并尝试自动旋转角度和调整box大小.
方法2: 按住ctrl键, 鼠标左键拉一个矩形, 会自动生成box并尝试自动旋转角度和调整box大小.
![auto-rotate](./doc/auto-rotate.gif)
方法3: 按住shift键,鼠标左键拉一个矩形, 会生成一个box, 包含矩形框围住的点, 方向为屏幕向上的方向. 注意该操作不会自动调整box的大小和方向.
注:
- 画矩形时尽量避免将目标物体之外的点选中,可以少选.
- 上述操作方法是通过矩形投影,将范围内的点进行region grow找到目标物体所有的点. 为了避免选中太多的错误点,建议将视角旋转到接近鸟瞰视角.
- region grow算法会受到地面的影响, 目前采用的方式是将最低的30cm部分先删除再region grow,如果地面非常倾斜,会影响效果, box生成之后需要手工调整.
- region grow算法比较慢(需要优化), 对于超大的物体如bus尽量框选完整,可以加快速度
- shift+矩形选择不会自动识别方向,为了让初始方向大致正确,建议将主视图旋转到物体的方向是沿屏幕向上或者向下,如果方向反了,按g键旋转180度.
### box操作
左键点击一个目标,会选中该目标物体. 选择的物体同时会在屏幕左侧显示3个投影窗口,分别是鸟瞰视图,侧视图和后视图. 如果有相机图片的话,还会显示box在图片上的投影同时在box的旁边还会显示快速工具栏(下图)
![fast-toolbox](./doc/fast-toolbox.png)
在快速工具栏上可以修改目标类别和tracking ID. 鼠标悬浮在工具按钮上会有相应的功能提示.
点击选中的box会激活主窗口的box调整模式,多次点击会在box大小角度位置中调整模型中切换, 拖动可对box进行调整 键盘z/x/c可以切换x/y/z轴. 使用v键也可以切换模式.
点击空白处可以取消box的编辑模式,或者取消box的选择, ESC键有同样的功能.
box被选择后, 左边的个子窗口都可以对box进行调整鼠标移动到某个子窗口即可在该子窗口进行调整, 调整操作方式相同, 但是各自针对不同的轴. 每个窗口可以调节2个轴的参数.
子窗口内滚动鼠标可调节显示的大小. 拉动虚线/角落可以调节box的大小和旋转角度. 双击虚线/角落/中心位置可以自动缩小box使其和点贴近. 双击旋转线会将box旋转180度.
按住Ctrl键拖动虚线, 释放鼠标会让对应的虚线自动向内侧贴近点.
按照Shift键拖动虚线有类似的效果, 但是会保持box的大小不变, 对box进行平移.
鸟瞰视图里的toolbox提供了几个常用功能的按钮:
![bird's eye view-toolbox](./doc/bev-toolbox.png)
分别是自动平移, 自动旋转, 自动旋转加缩放, 重置功能.
除鼠标和toolbox外, 还支持键盘操作.
a: 左移
s: 下移
d: 右移
w: 上移动
q: 逆时针旋转
e: 顺时针旋转
r: 逆时针旋转同时自动调整box大小
f: 顺时针选择同时自动调整box大小
g: 反向
t: 重置
鸟瞰图的红色圆圈表示lidar(xy平面的原点)的位置所处的方向.
侧视图和后视图提供和鸟瞰图相同的功能(自动旋转除外).
### 其他功能
-/=: 调整点的大小
ctrl+s 保存标注结果(暂不支持自动保存)
del/ctrl+d remove selected box
1,2 选择上一个下一个box
3,4 切换到上一帧/下一帧
5,6,7 显示/隐藏3个子视图的相机参数(调试功能)
space: 暂停/继续播放
## 批量编辑
![batch edit ui](./doc/batch-edit.png)
批量编辑界面可以同时对同一目标物体的多个实例(不同frame)进行编辑. 
- 激活方式1, 右键点击某box, 选择inspect all instances
- 激活方式2, 屏幕左上角窗口选择obj (试验用不能自动切换到合适的frame)
默认一次显示20帧进行编辑 每个子窗口的操作方式与非批量模式相同
在配置界面可以选择一次选择的帧数.
第一个实例的图片右下角可以调节每个编辑窗口的大小,可以根据需要调节.
右上角的功能按钮如下:
Trajectory 显示轨迹
Auto 自动标注
Auto(no rotation)
Interpolate 仅插值不进行旋转和位置的调整
Reload  放弃本次编辑的内容,重新加载
Finalize 将所有自动标注的内容标记为已确认等同于人工标注
Save 保存
Previous 前20帧(有10帧重叠)
Next 后20帧(有10帧重叠)
Exit 退出
说明
- 人工修改过的标注不会受到自动标注和插值的影响finalize就是将所有的自动标注的box标记为等同人工调整过的 标注完后需要finalize, save.
- 每个小窗口的标题是帧号,如果有M字母表示是由machine自动标注的,否则表示为人工修改过或者确认过的.
- 鼠标移动到某个小窗口, Ctrl+D可以删除box 或者右键操作
## 右键菜单
![batch edit ui](./doc/batchedit-context-menu.png)
## Object type configuration
如果需要修改模型的目标类型/大小/颜色,可以修改 [obj_cfg.js](src/public/js/../../../public/js/obj_cfg.js)文件.

@ -0,0 +1,233 @@
[工具介绍](./README.md)
[操作说明](./README_cn.md)
[快捷键](./doc/shortcuts_cn.md)
# 什么是3D目标检测/追踪
3D目标检测就是给定3D场景(激光点云,或者图像), 把所有感兴趣的物体识别出来, 用3D立方体将物体框起来, 并给出物体的类别. 如果还有追踪任务, 则需要给每个目标物体分配唯一ID.
对应的数据集可以参考
[KITTI数据集](http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d),
[百度Apollo数据集](http://apolloscape.auto/tracking.html)
## 如何制作
通常我们需要专用的数据采集车, 采集各种场景的数据. 数据包括激光雷达点云, 相机图片等. 然后从中挑选有代表性的片段进行标注.
# 标注要求
下文描述3D目标检测和追踪数据集(点云/图像)的标注.
## 标注范围
### 距离
不管目标物体距离多远, 只要是可辨认出目标物体的都应该标注.如果被完全遮挡则不用标.
### 类别及属性
所有可移动的物体都要标注.
部分类别有一些属性,需要根据实际情况选择或者填写
比如人的属性, 伞,婴儿车,行李,坐着,蹲着..
rider的属性载客1个载客2个..
车的属性: 门开着
目前支持的类别如下:
|Name|中文|可选属性|参考图片|
|----|----|------|------|
|Car|轿车|门开着||
|Van|面包车|||
|PoliceCar|警车|||
|Pedestrian|行人|伞,行李,坐着,蹲着,弯腰||
|RoadWorker|工人||![roadworker](./doc/objtype/road-worker.png)|
|Child|小孩|||
|Cone|雪糕筒|||
|FireHydrant|消防栓|||
|ReflectiveTriangle|安全三角||![triangle](./doc/objtype/Triangle.jpeg)|
|PlatformCart|平板车||![platform cart](./doc/objtype/platform-cart.jpg)|
|ConstructionCart|建筑小车||![Construction Cart](./doc/objtype/construction-cart.jpeg)|
|RoadBarrel|安全桶||![road barrel](./doc/objtype/road-barrel.jpg)|
|TrafficBarrier|交通护栏||![traffic barrier](./doc/objtype/TrafficBarrier.jpeg)|
|ScooterRider|骑电动车的人|伞,1个乘客,2个乘客||
|MotorcyleRider|骑摩托的人|伞,1个乘客,2个乘客||
|BicycleRider|骑自行车的|伞,1个乘客,2个乘客||
|Bicycle|自行车|倒在地上|
|Babycart|婴儿车||![babycart](./doc/objtype/babycart.png)|
|LongVehicle|长尾拖车||![longvehicle](./doc/objtype/LongVehicle.png)|
|Motorcycle|||
|Scooter|电动车||![scooter](./doc/objtype/scooter.jpg)|
|BicycleGroup|路边的电动车/自行车堆||
|Bus|||
|Truck|卡车||
|ConcreteTruck|水泥车||![Construction Cart](./doc/objtype/concrete-truck.jpeg)|
|Tram|电车||
|Animal|动物||
|ForkLift|叉车||![Forklift](./doc/objtype/forklift.jpg)|
|Trimotorcycle|电动三轮车||![Trimotocycle](./doc/objtype/Trimotorcycle.jpeg)|
|FreightTricycle|人力三轮车||![freight tricycle](./doc/objtype/freight-tricycle.png)|
|Crane|吊车||![crane](./doc/objtype/crane.jpeg)|
|Excavator|挖掘机||![excavator](./doc/objtype/excavator.png)|
|Roadroller|压路机||![road roller](./doc/objtype/RoadRoller.jpeg)|
|Bulldozer|推土机||![bull dozer](./doc/objtype/Bulldozer.jpeg)|
## 3D Box要求
3d box的大小方向类别都需要准确标注对于旋转方向需要将个轴都旋转到正确的方向
### 车
3D box应该力求和真实目标物体大小一样包括后视镜车门(如果是开的)等所有附属物box的方向是车头的方向
对于部分遮挡的车需要在相邻帧中找到同一物体将box大小COPY过去
如果找不到相同的物理根据照片等查看是否有相同车款如果有的话将box拷贝过去
如果找不到,可以根据经验估计大小.
### 人
box应该包括整个人包括四肢人走动时形状发生变化box应该跟着变化
人方向为整个主题躯干的方向,或者行进的方向.
注意如果地面是倾斜的,人仍然会平行于重力方向站立,不会垂直于地面,此处有别于车.
### 雪糕筒/交通障碍栏等/防撞桶
这些物体没有明确方向,可以使用任一方向.
## 追踪ID要求
每个物体需要标注跟踪ID在场景内唯一如果有中断后续应该仍然使用相同的ID.
# 如何开始标注
建议的标注方法
0. 建议按照目标物体标, 不要按帧标. 也就是一个目标物体在整个场景中全部标完后再标下一个物体.
1. 打开一个场景后可以先浏览一下然后开始选定目标物体进行标注 一个场景长20s, 包含40帧原始数据每秒选取了2帧进行标注(我们采集的数据是每秒10帧每帧间隔100ms. 由于间隔时间短场景变化太小所以不需要每帧都标注我们可以根据每秒2帧的标注结果进行线性插值完成对剩余帧的标注)
2. 标一个物体时,建议选择场景中视野最好的帧开始,比如距离较近,无遮挡就满足要求,这种情况下可以比较准确的标出物体的大小和方向. 标好后,可以使用复制/粘贴的方式把box迁移到上一帧或者下一帧两帧都调整好后可以启动批量标注功能(edit multiple instances),使用自动标注的方式对其他帧进行标注. 先标两帧的目的是给物体一个初始速度,对自动标注时的追踪有帮助. 也可以标完一帧后就开始批量标注,如果有问题再进行调整.
3. 批量标的时候,有时候自动标注算法会失败,比如找不到物体(追踪丢失等)方向不正确等这时需要手工调整可以调整一部分后再尝试批量标最后将不存在物体被遮挡或者太远看不见了的物体box删除自动算法包含 插值,自动(不旋转),全自动三种, 这三个功能依次更加自动化, 但是在复杂情况下出错的概率也更高。 而且这三个功能运行的条件是已经有一些或者至少一个box是已经标好的已经标好的box越多算法效果可能就更好。所以在标注过程中可以先尝试全自动如果有部分box已经标的满足要求可以将这些box finalize相当于已经人工确认这样下次再运行算法时就有更多可参考的输入。如果全自动效果不好可以尝试自动无旋转如果效果仍然不好可以尝试最简单的插值。不管用那种方法都应该是运行算法-手工修改一两个box-运行算法-...这样交替的方式操作,整体效率最高。
4. 建议打开trajectory查看该物体在整个场景里面的轨迹如果有异常比如方向变化太大等可以再次检查确认
5. 点击finalize, save, exit, 完成一个物体在场景里面的标注.
6. 对于小目标的物体如人在标注的过程中可能不太容易分辩方向可以根据其前进的方向相对与建筑路面的方向等进行辅助判断 在拥挤场景如果不容易进行追踪可以切换到10hz的数据(goto/10Hz)进行识别和标注 10hz的数据和Hz的数据是共享标注结果的识别完成后建议切换回2hz,因为10HZ下帧间差距太小标起来比较浪费时间
# FAQ
- 如何升级版本
标注工具是基于web页面的,服务端升级后就会自动升级,但是本地有时候会使用local cache不更新,此时可以用两种方式强制更新
- 如果使用chrome, 可以按住ctrl按刷新按钮
- 清除历史记录,再刷新页面
- 坐标系
标注系统涉及到2个坐标系, 点云坐标系和世界坐标系. 在设置里面可以选择显示的坐标系(coordinate system)
- LiDAR: 按点云坐标系显示, 原点为激光雷达的原点, 按车身方向, z轴朝上, y朝后, x朝左. 该配置下看起来世界向后走,采集车(ego car)不动
- GPS/UTM: 按大地坐标系显示, z朝上, x朝东, y朝北. 该配置下, 看起来地面不动, 车向前后. (由于定位精度和误差, 地面有时会漂移)
- 视图转来转去一段时间后, 就很难操作, 怎么办
- 在主界面右键选择reset view, 会回到当前frame正中间, 从上向下俯视.
- 如何确定物体的方向(旋转)
- 对于大型的车, 一般可以使用算法确定的方向, 然后微调.
- 对于人, 有几种方法:
- 可以先确定位置, 最后使用行进方向作为方向. (在multiple instance edit模式下, 右键/fit/moving direction), 然后根据情况微调. 如果人没有移动, 该方法不可使用.
- 按照周围环境, 如路的方向, 借助图片, 确定方向,
- 按照人的身形确定方向.
- 如何确定遮挡物体的大小
- 在前后帧中寻找相对完整的场景, 从该帧开始标, 然后将大小迁移到其他帧.
- multiple instance edit模式下, interpolate/auto等功能都是保持物体大小的, 只要有已经确定大小的帧就可以工作.
- 普通模式下, 可以使用copy, paste的方式将box从一帧挪到另一帧.
- 在用鼠标编辑box时, 按住shift, 可以保持box大小不变.
- 没有可参考的其他帧数据,而且被遮挡,怎么确定大小
- 根据环境在侧试图或者后视图中缩放视角查看物体周围是否有地面线如果有将box下边缘拉到地面线的位置. 如下图后边的灰色线为地面线可以据此确定box的下边界。
![bottom-line](./doc/box-size-bottom.png)
- 根据物体的对称性,将边线拉到对称的位置
- 查看对应的图片如果是常见车型如byd的的士可以找到另外的同类型的车对应的box复制粘贴然后修改位置不修改大小
- 实在没有任何办法的情况下,根据经验估计大小
- 如何修改类别
如果某个object的类别标错了又不想一个一个去修改可以在某帧修改好之后鼠标移到工具框的`...`然后选`Sync object type & attr`.
![modify-type](./doc/modify-type-attr.png)
- multiple instance edit模式下, 有哪些操作方法
- box选择, 使用鼠标可以选择多个操作对象
- 单击: 选择/反选
- Ctrl+单击: 选择/反选
- shift+单击: 选择连续帧
- 拖动: 选择多个帧
- 鼠标右键可以选择当前帧前面的,后面的, 所有的帧
- 注意鼠标如果在某个box的边线上点击时, 则是对box的编辑,不会进入选择功能
- box选择后, 使用右键菜单, 可以进行如下功能
- 删除
- interploate 按线性移动速度方式插值
- auto (no rotation) 自动(不旋转)
- auto annotate 全自动
- fit
- size: 自动适配大小
- position: 自动适配位置
- rotation: 用ai算法调整方向
- moving direciotn: 使用行进方向调整方向
- 上述功能对应俯视图的4个按钮
- finalize: 将所选box标记为人工编辑完成后续自动算法运行时会作为重要的参考而且自动算法不再会修改该box)
- reload
- goto this frame: 切换到普通模式,并切换到当前帧, 对应的box会选中
- 右上角的按钮
- `trajectory` 显示该物体在世界坐标系下的轨迹, 双击某个位置的box, 会退出并将对应的box选中.
- 其他按钮跟右键菜单一样,但是针对所有的帧.
- 显示屏有点小/大, 如果调整批量编辑的数量
- 右上角config -> `Batch mode max box number`
- 调整数量后, 如果显示的帧数少于场景总帧数, 请使用右上角按钮`next`/`previous`翻页
- 点云的点有点暗,看不清怎么办
- 使用+/-调整点的大小, 或者在config菜单中修改(右上角按钮)
- box编辑功能
- 快捷键列表 (俯视图/侧视图/后视图), 鼠标在某个视图上时,按键对该视图有效
- a: 左移
- s: 下移
- d: 右移
- w: 上移动
- q: 逆时针旋转
- e: 顺时针旋转
- r: 逆时针旋转同时自动调整box大小
- f: 顺时针选择同时自动调整box大小
- g: 反向
- 鼠标操作 (俯视图/侧视图/后视图)
- 鼠标可以对每个试图对应的矩形边线,角,旋转方向进行拖动/双击, 产生对应编辑效果
- 拖动 - 移动边线到鼠标位置
- 双击 - 自动fit到最近的内点
- shift+拖动 - 移动边线到鼠标位置,但是整个box大小保持不变
- ctrl+拖动 - 拖动后, 从做后的位置,自动fit到物体最近的内点
- 按钮
- scale - 自动调整大小
- rotate - 自动调整方向,大小不变
- move - 自动调整位置,大小和方向都不改变
- I am lucky - 方向/大小/位置都自动调整
- move direction - 使用物体的移动方向作为朝向,
- 如果是运动物体, 且前后帧至少有一帧已经标注过,位置正确即可计算方向
- 如果物体没有移动或者移动很缓慢,该功能不可使用
- 如果是大型车辆, 速度慢且转弯时, 该功能也不可使用
# 参考资料

@ -0,0 +1 @@
This folder is used to store models

@ -0,0 +1,299 @@
import os
import tensorflow as tf
import numpy as np
from . import util
import glob
import math
import json
util.config_gpu()
RESAMPLE_NUM = 10
model_file = "./algos/models/deep_annotation_inference.h5"
rotation_model = tf.keras.models.load_model(model_file)
rotation_model.summary()
NUM_POINT=512
def sample_one_obj(points, num):
if points.shape[0] < NUM_POINT:
return np.concatenate([points, np.zeros((NUM_POINT-points.shape[0], 3), dtype=np.float32)], axis=0)
else:
idx = np.arange(points.shape[0])
np.random.shuffle(idx)
return points[idx[0:num]]
def predict_yaw(points):
points = np.array(points).reshape((-1,3))
input_data = np.stack([x for x in map(lambda x: sample_one_obj(points, NUM_POINT), range(RESAMPLE_NUM))], axis=0)
pred_val = rotation_model.predict(input_data)
pred_cls = np.argmax(pred_val, axis=-1)
print(pred_cls)
ret = (pred_cls[0]*3+1.5)*np.pi/180.
ret =[0,0,ret]
print(ret)
return ret
# warmup the model
predict_yaw(np.random.random([1000,3]))
if False:
# weights_path = "../DeepAnnotate/da_rp_weights.h5"
# #filter_model = tf.keras.filter_models.load_filter_model(filter_model_path)
# filter_model = M.get_filter_model_rp_discrimination(common.NUM_POINT, 2, False)
# # filter_model.compile(optimizer=tf.keras.optimizers.Adam(0.0001),
# # loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
# # metrics=[tf.keras.metrics.sparse_categorical_accuracy, tf.keras.metrics.SparseTopKCategoricalAccuracy(k=2)])
# #filter_model.summary()
# filter_model.load_weights(weights_path)
# filter_model.summary()
use_env = False
if use_env:
filter_model_file = './algos/models/deepannotate_rp_discrimination_env.h5' #"./deepannotate_rp_discrimination.back.h5"
else:
filter_model_file = './algos/models/deepannotate_rp_discrimination_obj_xyzi.h5' #"./deepannotate_rp_discrimination.back.h5"
filter_model = tf.keras.models.load_model(filter_model_file)
filter_model.summary()
# rotation_model_file = "../SUSTechPoints-be/algos/models/deep_annotation_inference.h5"
# rotation_model = tf.keras.models.load_model(rotation_model_file)
# rotation_model.summary()
# #from rotation import model as rotation_model
# #NUM_POINT = 512
def cluster_points(pcdfile):
def pre_cluster_pcd(file, output_folder):
pre_cluster_exe = "/home/lie/code/pcltest/build/cluster"
cmd = "{} {} {}".format(pre_cluster_exe, file, output_folder)
#print(cmd)
os.system(cmd)
temp_output_folder = "./temppcd"
if os.path.exists(temp_output_folder):
os.system("rm {}/*".format(temp_output_folder))
else:
os.mkdir(temp_output_folder)
pre_cluster_pcd(pcdfile, temp_output_folder)
obj_files = glob.glob(temp_output_folder+"/*-obj.bin")
env_files = glob.glob(temp_output_folder+"/*-env.bin")
obj_files.sort()
env_files.sort()
## note these clusters are already sorted by points number
objs = [np.fromfile(c, dtype=np.float32).reshape(-1, 4) for c in obj_files]
envs = [np.fromfile(c, dtype=np.float32).reshape(-1, 4) for c in env_files]
clusters = list(zip(objs, envs))
return clusters
def euler_angle_to_rotate_matrix(eu, t):
theta = eu
#Calculate rotation about x axis
R_x = np.array([
[1, 0, 0],
[0, math.cos(theta[0]), -math.sin(theta[0])],
[0, math.sin(theta[0]), math.cos(theta[0])]
])
#Calculate rotation about y axis
R_y = np.array([
[math.cos(theta[1]), 0, math.sin(theta[1])],
[0, 1, 0],
[-math.sin(theta[1]), 0, math.cos(theta[1])]
])
#Calculate rotation about z axis
R_z = np.array([
[math.cos(theta[2]), -math.sin(theta[2]), 0],
[math.sin(theta[2]), math.cos(theta[2]), 0],
[0, 0, 1]])
R = np.matmul(R_x, np.matmul(R_y, R_z))
t = t.reshape([-1,1])
R = np.concatenate([R,t], axis=-1)
R = np.concatenate([R, np.array([0,0,0,1]).reshape([1,-1])], axis=0)
return R
def sample_one_obj(points, num):
centroid = list(np.mean(points[:,:3], axis=0)) # intensity
if points.shape[1] > 3:
centroid = np.append(centroid, np.zeros(points.shape[1]-3))
print(centroid)
centroid.reshape(1,-1)
points = points - centroid
# padding or sample
if points.shape[0]>num:
idx = np.arange(points.shape[0])
np.random.shuffle(idx)
points = points[idx[0:num]]
else:
sample_idx = np.random.randint(0, high = points.shape[0], size=num - points.shape[0])
padding = points[sample_idx]
points = np.concatenate([points, padding], axis=0)
print("input shape", points.shape)
return points[:,:3]
def filter_nearby_objects(clusters):
def nearby(c): # c is a pair
center = np.mean(c,axis=0)
return np.sum((center*center)[0:2]) < 70*70
ind = [nearby(c[0]) for c in clusters]
return np.array(clusters)[ind]
# # return true/false list
def filter_candidate_objects(clusters):
## all clusters stacked into a batch
objidx = 1 if use_env else 0
input_cluster_points = np.stack([sample_one_obj(p[objidx], NUM_POINT) for p in clusters], axis=0) # use env to do filtering
pred_val = filter_model.predict(input_cluster_points)
#print(pred_val)
prob = np.exp(pred_val)/np.sum(np.exp(pred_val),axis=1,keepdims=True)
#print(prob)
#pred_cls = np.argmax(prob, axis=1)
pred_cls = prob[:,1]>0.5
return pred_cls
def decide_obj_rotation(objs):
input_data = np.stack([sample_one_obj(o, NUM_POINT) for o in objs], axis=0)
pred_val = rotation_model.predict(input_data)
pred_cls = np.argmax(pred_val, axis=-1)
ret = (pred_cls*3+1.5)*np.pi/180.0 #only z-axis rotation is predicted
return ret
def calculate_box_dimension(objs, rotation):
def calc_one_box(obj, rot):
#print(obj.shape, rot)
rot = np.array([0,0,rot])
centroid = np.mean(obj, axis=0)
obj = obj - centroid
trans_mat = euler_angle_to_rotate_matrix(rot, np.zeros(3))[:3,:3]
relative_position = np.matmul(obj, trans_mat)
pmin = np.min(relative_position, axis=0)
pmax = np.max(relative_position, axis=0)
pmin[2] = pmin[2] - 0.2 # remember 0.2 was removed, as ground
box_dim = pmax-pmin
box_center_delta = box_dim/2 + pmin
#center delta shoulb be translated to global coord
box_center_delta = np.matmul(trans_mat, box_center_delta)
box_center = box_center_delta + centroid
return np.stack([box_center, box_dim, rot],axis=0)
return [calc_one_box(obj, rot) for obj,rot in zip(objs, rotation)]
## main func
def pre_annotate(pcdfile):
clusters = cluster_points(pcdfile)
clusters = filter_nearby_objects(clusters)
cand_ind = filter_candidate_objects(clusters)
# positive_files = np.array(cluster_files)[cand_ind]
# positive_files = [x for x in map(lambda f: f.replace(".bin",".pcd"), list(positive_files))]
# outstr = ""
# for f in positive_files:
# outstr = outstr + " " + f
# print(outstr)
# calculate box
cand_clusters = np.array(clusters)[cand_ind]
# only objs is needed from now on
cand_clusters = [x[0][:,:3] for x in cand_clusters]
cand_rotation = decide_obj_rotation(cand_clusters)
# print(cand_rotation)
boxes = calculate_box_dimension(cand_clusters, cand_rotation)
#print(boxes)
return boxes
def translate_np_to_json(boxes):
def trans_one_box(box):
return {
'obj_type': 'Unknown',
'psr': {
'position': {
'x': box[0,0],
'y': box[0,1],
'z': box[0,2],
},
'scale': {
'x': box[1,0],
'y': box[1,1],
'z': box[1,2],
},
'rotation': {
'x': box[2,0],
'y': box[2,1],
'z': box[2,2],
}
},
'obj_id': '',
}
# return [trans_one_box(b) for b in boxes]
def annotate_file(input, output=None):
boxes = pre_annotate(input)
boxes_json = translate_np_to_json(boxes)
if output:
with open(output, 'w') as f:
json.dump(boxes_json, f)
return boxes_json
# if __name__ == "__main__":
# #root_folder = "/home/lie/fast/code/SUSTechPoints-be/data/sustechscapes-mini-dataset-test"
# root_folder = "/home/lie/fast/code/SUSTechPoints-be/data/2020-07-12-15-36-24"
# files = os.listdir(root_folder + "/lidar")
# files.sort()
# for pcdfile in files:
# print(pcdfile)
# jsonfile = pcdfile.replace(".pcd",".json")
# annotate_file(root_folder + "/lidar/" + pcdfile, root_folder + "/label/" + jsonfile)

@ -0,0 +1,43 @@
import numpy as np
import tensorflow as tf
import util
util.config_gpu()
RESAMPLE_NUM = 10
model_file = "./algos/models/deep_annotation_inference.h5"
model = tf.keras.models.load_model(model_file)
model.summary()
NUM_POINT=512
def sample_one_obj(points, num):
if points.shape[0] < NUM_POINT:
return np.concatenate([points, np.zeros((NUM_POINT-points.shape[0], 3), dtype=np.float32)], axis=0)
else:
idx = np.arange(points.shape[0])
np.random.shuffle(idx)
return points[idx[0:num]]
def predict_yaw(points):
points = np.array(points).reshape((-1,3))
input_data = np.stack([x for x in map(lambda x: sample_one_obj(points, NUM_POINT), range(RESAMPLE_NUM))], axis=0)
pred_val = model.predict(input_data)
pred_cls = np.argmax(pred_val, axis=-1)
print(pred_cls)
ret = (pred_cls[0]*3+1.5)*np.pi/180.
ret =[0,0,ret]
print(ret)
return ret
# warmup the model
predict_yaw(np.random.random([1000,3]))
if __name__ == "__main__":
predict_yaw(np.random.random([1000,3]))

@ -0,0 +1,262 @@
# from filterpy.kalman import KalmanFilter
import numpy as np
import sys
import os
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(BASE_DIR)
sys.path.append(os.path.join(BASE_DIR, '..'))
import scene_reader
class MAFilter:
def __init__(self, init_x):
self.x = init_x
self.v = np.zeros(9) # position, rotation
self.step = 0
def update(self, x):
if self.step == 0:
self.v = x-self.x
else:
self.v = self.v*0.5 + (x-self.x)*0.5
self.x[0:9] = x
self.step += 1
def predict(self):
self.x += self.v
self.step += 1
return self.x
def get_my_filter(init_x):
return MAFilter(init_x)
# def get_kalman_filter(init_x):
# dim_z = 9
# kf = KalmanFilter(dim_x=12, dim_z=dim_z)
# kf.F = np.array([ [1,0,0,0,0,0,0,0,0,1,0,0], # state transition matrix
# [0,1,0,0,0,0,0,0,0,0,1,0],
# [0,0,1,0,0,0,0,0,0,0,0,0],
# [0,0,0,1,0,0,0,0,0,0,0,0],
# [0,0,0,0,1,0,0,0,0,0,0,0],
# [0,0,0,0,0,1,0,0,0,0,0,0],
# [0,0,0,0,0,0,1,0,0,0,0,0],
# [0,0,0,0,0,0,0,1,0,0,0,0],
# [0,0,0,0,0,0,0,0,1,0,0,0],
# [0,0,0,0,0,0,0,0,0,1,0,0],
# [0,0,0,0,0,0,0,0,1,0,1,0],
# [0,0,0,0,0,0,0,0,0,0,0,1],
# ])
# kf.H = np.array([ [1,0,0,0,0,0,0,0,0,0,0,0], # measurement function,
# [0,1,0,0,0,0,0,0,0,0,0,0],
# [0,0,1,0,0,0,0,0,0,0,0,0],
# [0,0,0,1,0,0,0,0,0,0,0,0],
# [0,0,0,0,1,0,0,0,0,0,0,0],
# [0,0,0,0,0,1,0,0,0,0,0,0],
# [0,0,0,0,0,0,1,0,0,0,0,0],
# [0,0,0,0,0,0,0,1,0,0,0,0],
# [0,0,0,0,0,0,0,0,1,0,0,0],
# ])
# # self.kf.R[0:,0:] *= 10. # measurement uncertainty
# #kf.P[dim_z:,dim_z:] *= 1000. #state uncertainty, give high uncertainty to the unobservable initial velocities, covariance matrix
# #kf.P *= 10.
# # self.kf.Q[-1,-1] *= 0.01 # process uncertainty
# #kf.Q[dim_z:,dim_z:] *= 0.01
# #kf.x = kf.x * 0.0
# kf.x[:dim_z] = init_x.reshape((dim_z, 1))
# print(kf.P)
# return kf
def get_obj_ann(scene, frame, id):
ann = scene_reader.read_annotations(scene, frame)
target_ann = list(filter(lambda a: a["obj_id"]==id, ann))
if len(target_ann) == 1:
return target_ann[0]
elif len(target_ann)> 1:
print("Warning: duplicate object id found!")
return target_ann[0]
else:
return None
# bbox3D measurement state: x,y,z,theta,l,w,h, vx,vy,vz
def ann_to_kalman_state(ann):
return np.array([
ann["psr"]["position"]["x"],
ann["psr"]["position"]["y"],
ann["psr"]["position"]["z"],
ann["psr"]["scale"]["x"],
ann["psr"]["scale"]["y"],
ann["psr"]["scale"]["z"],
ann["psr"]["rotation"]["x"],
ann["psr"]["rotation"]["y"],
ann["psr"]["rotation"]["z"],
])
def kalman_state_to_ann(proto, state):
state = np.reshape(state, -1)
return {"psr":{"position":{"x":state[0],
"y":state[1],
"z":state[2]
},
"scale": {"x":state[3],
"y":state[4],
"z":state[5]},
"rotation":{"x":state[6],
"y":state[7],
"z":state[8]
},
},
"obj_type":proto["obj_type"],
"obj_id":proto["obj_id"],
}
def interpolate_segment(start_ann, end_ann, insert_number):
end = ann_to_kalman_state(end_ann)
start = ann_to_kalman_state(start_ann)
linear_delta = (end-start)/(insert_number+1)
return list(map(lambda i: kalman_state_to_ann(start_ann, start+linear_delta*(i+1)), range(insert_number)))
def interpolate(annotations):
# interpolate
N = len(annotations)
i = 0
num_interpolate = 0
while i+1<N:
#find start
start = None
end = None
while (i+1)<N and not(annotations[i] and (annotations[i+1] is None)):
i = i+1
start = i
i = i+2
while (i < N) and (annotations[i] is None):
i = i+1
if i < len(annotations):
end = i
# do interpolation
if start is not None and end is not None:
print("interpolate", start, end)
predicted = interpolate_segment(annotations[start], annotations[end], end-start-1)
for p in predicted:
p["annotator"]="I"
annotations[(start+1):end] = predicted
num_interpolate += end-start-1
# better if we do some automatic annotation adjustments
else:
print(start, end, "not interpolatable")
return num_interpolate
def kalmanfilter_pred(annotations):
i = 0
while annotations[i] is None or annotations[i].get("annotator") == "K":
i += 1
start_ann = None
if i < len(annotations):
start_ann = annotations[i]
else:
return 0
state = ann_to_kalman_state(start_ann)
ref_ann = start_ann
print("init", state)
kalmanfilter = get_my_filter(state)
i+=1
print("kalman update")
while i < len(annotations) and annotations[i] is not None:
state = ann_to_kalman_state(annotations[i])
# update velocity
print(state)
kalmanfilter.predict()
kalmanfilter.update(state)
ref_ann = annotations[i] # record objtype/id ...
i += 1
#predict
pred_num = 0
while i < len(annotations) and annotations[i] is None:
kalmanfilter.predict()
pred = kalmanfilter.x
ann = kalman_state_to_ann(ref_ann, pred)
ann["annotator"]="K"
annotations[i] = ann
i += 1
pred_num += 1
return pred_num
def predict(scene_id, obj_id, current_frame, predict_frame):
print("interpolate", scene_id, obj_id)
scene = scene_reader.get_one_scene(scene_id)
frames = scene["frames"]
print(frames)
annotations = list(map(lambda f: get_obj_ann(scene_id, f, obj_id), frames))
for a in annotations:
print(a)
print("remove M anns")
# remove K anns
for i,a in enumerate(annotations):
if a and a.get("annotator") and (a["annotator"]=="K" or a["annotator"]=="I"):
annotations[i]=None
num_pred = 0
num_pred += interpolate(annotations)
num_pred += kalmanfilter_pred(annotations)
annotations.reverse()
num_pred += kalmanfilter_pred(annotations)
annotations.reverse() #reverse back
# now predict
print("start save ..")
updated_frames = []
for i,a in enumerate(annotations):
print(a.get("annotator"), "\t", a["psr"]["position"])
if a and a.get("annotator") and (a["annotator"]=="K" or a["annotator"]=="I"):
write_annotation_back(scene_id, frames[i], a)
updated_frames.append(frames[i])
print(len(updated_frames), updated_frames)
return updated_frames
def write_annotation_back(scene_id, frame, new_ann):
ann = scene_reader.read_annotations(scene_id, frame)
ann = list(filter(lambda a: a["obj_id"]!=new_ann["obj_id"], ann))
ann.append(new_ann)
scene_reader.save_annotations(scene_id, frame, ann)
if __name__ == "__main__":
predict("rider_2hz", "1", None, None)

@ -0,0 +1,16 @@
import tensorflow as tf
def config_gpu():
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
try:
# Currently, memory growth needs to be the same across GPUs
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
logical_gpus = tf.config.experimental.list_logical_devices('GPU')
print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
except RuntimeError as e:
# Memory growth must be set before GPUs have been initialized
print(e)

@ -0,0 +1,50 @@
import cv2
import numpy as np
import json
# Dependencies Ubuntu1804
# sudo apt install libsm6 libxrender1
# pip3 install opencv-python --user
# Parameters:
# json_name: name of output json file
# camera_mat: 3x3 Camera Matrix
# dist_coeff: distortion coefficients
# lidar_points: Nx3 1-channel 3D points
# image_points: Nx2 1-channel 2D points
# Return value:
# T: 4x4 SE(3) transform matrix
def lidar_camera_calib(json_name, camera_mat, dist_coeff, lidar_points, image_points):
retval, rvec, tvec, inliers = cv2.solvePnPRansac(lidar_points, image_points, camera_mat, dist_coeff, iterationsCount=5000, reprojectionError=8.0)
print("-----")
rot_mat, jac = cv2.Rodrigues(rvec)
print(rot_mat)
print("-----")
print(tvec)
print("-----")
rt = np.hstack((rot_mat, tvec))
T = np.vstack((rt, [[0,0,0,1]]))
print (T)
calib_json = {
"extrinsic": T.flatten().tolist(),
"intrinsic": camera_mat.flatten().tolist()
}
json_object = json.dumps(calib_json, indent = 4)
# Writing to sample.json
with open(json_name, "w") as outfile:
outfile.write(json_object)
return T
### TEST
if __name__ == "__main__":
fs = cv2.FileStorage("front_config.yaml", cv2.FILE_STORAGE_READ)
camera_mat = fs.getNode("CameraMat").mat()
dist_coeff = fs.getNode("DistCoeff").mat()
image_points = fs.getNode("CameraPoints").mat()
print(image_points)
lidar_points = fs.getNode("LidarPoints").mat()
print(lidar_points)
lidar_camera_calib("front.json", camera_mat, dist_coeff, lidar_points, image_points)
pass

@ -0,0 +1,9 @@
{
"extrinsic": [-0.9994466143126584, 0.033033376071303994, -0.003906559137689193, 0.20487898588180542,
0.0025198193977806005, -0.0419178508124942, -0.9991178830816032, 0.0013696063542738557,
-0.033167991334523576, -0.9985748293686324, 0.04181141593201179, -0.10943480581045151,
0, 0, 0, 1],
"intrinsic": [1.2100629810000000e+03, 0.0, 1.0224299030000000e+03,
0.0,1.2058507139999999e+03, 7.9254164400000002e+02,
0.0, 0.0, 1.0]
}

@ -0,0 +1,18 @@
{
"extrinsic_ok": [0.000795916642330613, -0.9994847331424607, 0.03208792189972302, -0.5,
0.05182623470216488, -0.03200358149726322, -0.9981431821977967, 0.0013696063542738557,
0.998655800520527, 0.002457434941619845, 0.05177405817794394, -0.10943480581045151,
0, 0, 0, 1],
"extrinsic": [ -3.9384503688273731e-02, -9.9721160654039998e-01,
6.3386691429213382e-02, 1.2484878301620483e-01,
5.0218947462187857e-02, -6.5331141114291447e-02,
-9.9659916682510530e-01, -1.8440222740173340e-01,
9.9796138110901755e-01, -3.6067350634868045e-02,
5.2651951845710920e-02, -3.9436036348342896e-01, 0, 0, 0, 1],
"intrinsic": [1.2100629810000000e+03, 0.0, 1.0224299030000000e+03,
0.0,1.2058507139999999e+03, 7.9254164400000002e+02,
0.0, 0.0, 1.0]
}

@ -0,0 +1,11 @@
{
"extrinsic": [3.5640002421153172e-02, 9.9786432954622106e-01,
-5.4740935749134578e-02, 1.0951525717973709e-01,
-9.7262110862409989e-03, -5.4426799113952706e-02,
-9.9847039232824297e-01, -3.1793252564966679e-03,
-9.9931736252570236e-01, 3.6117909096182677e-02,
7.7656678524001821e-03, -3.9152929186820984e-01, 0, 0, 0, 1],
"intrinsic": [1.2100629810000000e+03, 0.0, 1.0224299030000000e+03,
0.0,1.2058507139999999e+03, 7.9254164400000002e+02,
0.0, 0.0, 1.0]
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 268 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 275 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 275 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 274 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 242 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 213 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 297 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 302 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 262 KiB

@ -0,0 +1,401 @@
[
{
"obj_id": "1",
"obj_type": "Car",
"psr": {
"position": {
"x": 3.529868076024286,
"y": -20.977179189290187,
"z": 0.2729166298029867
},
"rotation": {
"x": -0.06410093347106911,
"y": 0.019216916140136837,
"z": -1.4922565104551522
},
"scale": {
"x": 3.9244923848790014,
"y": 1.865599097293131,
"z": 1.7888008346377304
}
}
},
{
"obj_id": "3",
"obj_type": "Bus",
"psr": {
"position": {
"x": 8.558005738090287,
"y": -43.42623181315385,
"z": 2.2127436169999997
},
"rotation": {
"x": -0.05043085100891321,
"y": 0.00034744616962805586,
"z": 1.4537329581202632
},
"scale": {
"x": 10.607773093776615,
"y": 3.2364406462431763,
"z": 3.2164060563210306
}
}
},
{
"obj_id": "5",
"obj_type": "Rider",
"psr": {
"position": {
"x": 2.5209829273189825,
"y": -42.68335076021329,
"z": 1.584129100000001
},
"rotation": {
"x": 0,
"y": 0,
"z": 4.336244465085028
},
"scale": {
"x": 1.6596497400399342,
"y": 0.6739244576664531,
"z": 1.7
}
}
},
{
"obj_id": "6",
"obj_type": "Rider",
"psr": {
"position": {
"x": -10.771864568778255,
"y": -15.93655177072094,
"z": 0.24457627000000032
},
"rotation": {
"x": 0,
"y": 0,
"z": -1.9517015556769242
},
"scale": {
"x": 1.6596497400399342,
"y": 0.6739244576664531,
"z": 1.7
}
}
},
{
"obj_id": "8",
"obj_type": "Car",
"psr": {
"position": {
"x": 4.1449631260256865,
"y": -49.72015370499495,
"z": 1.8306930000000008
},
"rotation": {
"x": -0.05381384131006369,
"y": 0.0026916304823240986,
"z": 1.449489444900611
},
"scale": {
"x": 4.5,
"y": 1.6788924984728437,
"z": 1.656933188116807
}
}
},
{
"obj_id": "13",
"obj_type": "Car",
"psr": {
"position": {
"x": 4.782968954281387,
"y": -38.264784793961525,
"z": 1.2062180000000002
},
"rotation": {
"x": -0.053129458150669544,
"y": 0,
"z": 1.4605105607601199
},
"scale": {
"x": 4.590450000000001,
"y": 1.8,
"z": 1.4558852218914666
}
}
},
{
"obj_id": "14",
"obj_type": "Pedestrian",
"psr": {
"position": {
"x": 21.764847842841846,
"y": 19.67531983340936,
"z": -2.3684009999999995
},
"rotation": {
"x": 0,
"y": 0,
"z": -1.4134299092031593
},
"scale": {
"x": 0.941235148478231,
"y": 0.8223159109219417,
"z": 1.9347585767365922
}
}
},
{
"obj_id": "15",
"obj_type": "Car",
"psr": {
"position": {
"x": 24.92262785789717,
"y": -31.23023375697396,
"z": 0.346809
},
"rotation": {
"x": 0,
"y": 0,
"z": -0.2819996471249957
},
"scale": {
"x": 4.5,
"y": 1.6458116836318435,
"z": 1.5
}
}
},
{
"obj_id": "20",
"obj_type": "Car",
"psr": {
"position": {
"x": -2.717663507885487,
"y": -28.242388522408124,
"z": 0.918762822918971
},
"rotation": {
"x": -0.06517306244786299,
"y": 0.00010959092045555565,
"z": 4.658312072236952
},
"scale": {
"x": 4.921583727079626,
"y": 4.030003022236565,
"z": 2.0017558148508505
}
}
},
{
"obj_id": "23",
"obj_type": "Car",
"psr": {
"position": {
"x": 15.708570068829054,
"y": 22.8816763991485,
"z": -2.823972376959448
},
"rotation": {
"x": -0.06287060419300494,
"y": 0.044058144173183246,
"z": 1.5608175536652484
},
"scale": {
"x": 4.723135139885376,
"y": 1.6295165184473699,
"z": 1.9629544517990642
}
}
},
{
"obj_id": "27",
"obj_type": "Car",
"psr": {
"position": {
"x": 36.659412470409734,
"y": -34.404139500162444,
"z": 0.8085990000000003
},
"rotation": {
"x": 0,
"y": 0,
"z": 6.04508466163526
},
"scale": {
"x": 4.5,
"y": 1.8,
"z": 1.5
}
}
},
{
"obj_id": "31",
"obj_type": "Pedestrian",
"psr": {
"position": {
"x": -20.783288738584815,
"y": -35.12896563418934,
"z": 1.858591100000001
},
"rotation": {
"x": -0.005200816595089385,
"y": 0,
"z": 1.471107993095347
},
"scale": {
"x": 0.5181025259869625,
"y": 0.7083013780156343,
"z": 1.7341699999999998
}
}
},
{
"obj_id": "50",
"obj_type": "Rider",
"psr": {
"position": {
"x": 15.9087829430282,
"y": -40.12813618888572,
"z": 1.2355839999999998
},
"rotation": {
"x": 0,
"y": 0,
"z": 1.3266865299729125
},
"scale": {
"x": 1.797162849996143,
"y": 1.3257591556815653,
"z": 1.8592649635634135
}
}
},
{
"obj_id": "51",
"obj_type": "Pedestrian",
"psr": {
"position": {
"x": 22.8371355483323,
"y": 4.90188930510908,
"z": -1.7500000000000009
},
"rotation": {
"x": 0,
"y": 0,
"z": 4.482388980384684
},
"scale": {
"x": 0.6015009483696415,
"y": 0.6285815091742153,
"z": 1.7
}
}
},
{
"obj_id": "53",
"obj_type": "Pedestrian",
"psr": {
"position": {
"x": 19.123480909896898,
"y": 1.5139745995868878,
"z": -1.3000000000000005
},
"rotation": {
"x": 0,
"y": 0,
"z": 4.71238898038469
},
"scale": {
"x": 0.7412849208820917,
"y": 0.6806637022431177,
"z": 1.7
}
}
},
{
"obj_id": "54",
"obj_type": "Motor",
"psr": {
"position": {
"x": 24.253720531058207,
"y": 15.162416511901782,
"z": -2.4499999999999993
},
"rotation": {
"x": 0,
"y": 0,
"z": 0.047350384707351756
},
"scale": {
"x": 1.7485658990665154,
"y": 1.0208318215505217,
"z": 1.5
}
}
},
{
"obj_id": "81",
"obj_type": "Pedestrian",
"psr": {
"position": {
"x": -8.085881877042993,
"y": -6.2551993211908155,
"z": -0.1914089000000001
},
"rotation": {
"x": -0.005200816595089385,
"y": 0,
"z": 4.61270064668514
},
"scale": {
"x": 0.6448904310729859,
"y": 0.7083013780156343,
"z": 1.7341699999999998
}
}
},
{
"obj_id": "82",
"obj_type": "Pedestrian",
"psr": {
"position": {
"x": -6.645859750894334,
"y": -4.976769948383015,
"z": 0.7114255483000865
},
"rotation": {
"x": -0.16631359886906968,
"y": 0,
"z": -1.669189425167795
},
"scale": {
"x": 3.302160998965941,
"y": 2.0051437367936247,
"z": 1.9156025512243486
}
}
},
{
"obj_id": "1001",
"obj_type": "Truck",
"psr": {
"position": {
"x": -22.386071618064307,
"y": -21.994698203384374,
"z": 0.8958240400000002
},
"rotation": {
"x": -0.06061705351581413,
"y": 0.0005575736396516535,
"z": 3.082377014838373
},
"scale": {
"x": 5.083309851403533,
"y": 1.7025087091290587,
"z": 2.2705067053039354
}
}
}
]

@ -0,0 +1,443 @@
[
{
"obj_id": "1",
"obj_type": "Car",
"psr": {
"position": {
"x": 4.503374840671313,
"y": -15.877214498771757,
"z": -0.3460004979550271
},
"rotation": {
"x": 0,
"y": 0,
"z": -1.5446163880149815
},
"scale": {
"x": 4.177141189575195,
"y": 1.7932285025511971,
"z": 1.678846906459218
}
}
},
{
"obj_id": "3",
"obj_type": "Bus",
"psr": {
"position": {
"x": 10.521892170327192,
"y": -30.12354183191181,
"z": 1.0691971370000002
},
"rotation": {
"x": -0.05043085100891321,
"y": 0.00034744616962805586,
"z": 1.4962921107974831
},
"scale": {
"x": 10.4060401,
"y": 2.6116105531799785,
"z": 3.2164060563210306
}
}
},
{
"obj_id": "4",
"obj_type": "Car",
"psr": {
"position": {
"x": 5.585192027760058,
"y": -48.75586246676285,
"z": 1.4203556999999993
},
"rotation": {
"x": -0.053810528807219656,
"y": 0.0053141924483858785,
"z": 1.4025025217488531
},
"scale": {
"x": 4.500000000000001,
"y": 1.7126382376921478,
"z": 1.7071399206499345
}
}
},
{
"obj_id": "5",
"obj_type": "Rider",
"psr": {
"position": {
"x": 3.635891386798903,
"y": -35.527682658837875,
"z": 0.8730890000000007
},
"rotation": {
"x": 0,
"y": 0,
"z": 4.166373105671871
},
"scale": {
"x": 1.6596497400399342,
"y": 0.6739244576664531,
"z": 1.7
}
}
},
{
"obj_id": "6",
"obj_type": "Rider",
"psr": {
"position": {
"x": -9.92745449121503,
"y": -11.280291087150871,
"z": -0.3301027299999997
},
"rotation": {
"x": 0,
"y": 0,
"z": 4.8108484679662915
},
"scale": {
"x": 1.6596497400399342,
"y": 0.6739244576664531,
"z": 1.7
}
}
},
{
"obj_id": "8",
"obj_type": "Car",
"psr": {
"position": {
"x": 6.345250193364336,
"y": -38.390702547377195,
"z": 0.938608
},
"rotation": {
"x": -0.05381384131006369,
"y": 0.0026916304823240986,
"z": 1.4440701421438633
},
"scale": {
"x": 4.5,
"y": 1.6788924984728437,
"z": 1.656933188116807
}
}
},
{
"obj_id": "12",
"obj_type": "ScooterRider",
"psr": {
"position": {
"x": 14.820338434030418,
"y": 3.435544743843195,
"z": -1.6107520845526528
},
"rotation": {
"x": -0.053440348687811355,
"y": 0.035967629937501557,
"z": 1.6076175054396962
},
"scale": {
"x": 4.379977656992434,
"y": 1.8005836314652388,
"z": 1.7880874763364236
}
}
},
{
"obj_id": "15",
"obj_type": "Car",
"psr": {
"position": {
"x": 26.014664657890535,
"y": -22.961017751495092,
"z": -0.359602
},
"rotation": {
"x": 0,
"y": 0,
"z": -0.2716148841733539
},
"scale": {
"x": 4.5,
"y": 1.6458116836318435,
"z": 1.5
}
}
},
{
"obj_id": "20",
"obj_type": "Car",
"psr": {
"position": {
"x": -0.7670059417760058,
"y": -30.939386273400487,
"z": 0.7940450000000004
},
"rotation": {
"x": -0.06517306244786299,
"y": 0.00010959092045555565,
"z": 4.66849627543049
},
"scale": {
"x": 4.921583727079626,
"y": 1.6458116836318435,
"z": 2.0017558148508505
}
}
},
{
"obj_id": "23",
"obj_type": "Car",
"psr": {
"position": {
"x": 15.14633855082866,
"y": 30.611494570558676,
"z": -2.9500175400000015
},
"rotation": {
"x": -0.06287060419300494,
"y": 0.044058144173183246,
"z": 1.6023625854728965
},
"scale": {
"x": 4.281595594230369,
"y": 1.6295165184473699,
"z": 1.7242113198564337
}
}
},
{
"obj_id": "27",
"obj_type": "Car",
"psr": {
"position": {
"x": 36.9113921044227,
"y": -25.68832836540986,
"z": 0.008700000000000027
},
"rotation": {
"x": 0,
"y": 0,
"z": 6.024547645659967
},
"scale": {
"x": 4.5,
"y": 1.8,
"z": 1.5
}
}
},
{
"obj_id": "31",
"obj_type": "Pedestrian",
"psr": {
"position": {
"x": -19.401334152866184,
"y": -28.11937218362243,
"z": 1.0960769000000004
},
"rotation": {
"x": -0.005200816595089385,
"y": 0,
"z": 1.6579219608677465
},
"scale": {
"x": 0.5181025259869625,
"y": 0.7083013780156343,
"z": 1.7341699999999998
}
}
},
{
"obj_id": "50",
"obj_type": "Rider",
"psr": {
"position": {
"x": 18.173753849361674,
"y": -30.367500823003894,
"z": 0.2726954
},
"rotation": {
"x": 0,
"y": 0,
"z": 1.3263297456296164
},
"scale": {
"x": 1.797162849996143,
"y": 1.3257591556815653,
"z": 1.8592649635634135
}
}
},
{
"obj_id": "51",
"obj_type": "Pedestrian",
"psr": {
"position": {
"x": 22.97686177419746,
"y": 11.40824442499958,
"z": -1.8135980000000007
},
"rotation": {
"x": 0,
"y": 0,
"z": 4.604303626171054
},
"scale": {
"x": 0.4,
"y": 0.5,
"z": 1.7
}
}
},
{
"obj_id": "53",
"obj_type": "Pedestrian",
"psr": {
"position": {
"x": 19.431924798827822,
"y": 7.5874583524613115,
"z": -1.5661729000000006
},
"rotation": {
"x": 0,
"y": 0,
"z": 4.94889022902884
},
"scale": {
"x": 0.7412849208820917,
"y": 0.6806637022431177,
"z": 1.7
}
}
},
{
"obj_id": "54",
"obj_type": "Motor",
"psr": {
"position": {
"x": 23.871463015599147,
"y": 23.441630667210575,
"z": -2.7554859999999994
},
"rotation": {
"x": 0,
"y": 0,
"z": 0.022992675932349105
},
"scale": {
"x": 1.7485658990665154,
"y": 1.0208318215505217,
"z": 1.5
}
}
},
{
"obj_id": "55",
"obj_type": "Pedestrian",
"psr": {
"position": {
"x": 31.439284482588846,
"y": -4.193343996232173,
"z": -0.9135979999999999
},
"rotation": {
"x": 0,
"y": 0,
"z": 4.604303626171054
},
"scale": {
"x": 0.5285163867593005,
"y": 0.4571699121199565,
"z": 1.7515116999999998
}
}
},
{
"obj_id": "56",
"obj_type": "Pedestrian",
"psr": {
"position": {
"x": 31.391454285232612,
"y": -9.776642501469652,
"z": -0.6135979999999996
},
"rotation": {
"x": 0,
"y": 0,
"z": 4.604303626171054
},
"scale": {
"x": 0.4,
"y": 0.5,
"z": 1.7
}
}
},
{
"obj_id": "81",
"obj_type": "Pedestrian",
"psr": {
"position": {
"x": -8.238199666011496,
"y": -1.2778094076889062,
"z": -0.5347769000000001
},
"rotation": {
"x": -0.005200816595089385,
"y": 0,
"z": 4.42995090230805
},
"scale": {
"x": 0.6448904310729859,
"y": 0.7083013780156343,
"z": 1.7341699999999998
}
}
},
{
"obj_id": "82",
"obj_type": "Pedestrian",
"psr": {
"position": {
"x": -8.833678431936278,
"y": -0.8071350377079227,
"z": -0.3652358000000001
},
"rotation": {
"x": -0.005200816595089385,
"y": 0,
"z": 4.364731468834899
},
"scale": {
"x": 1.693008699814737,
"y": 0.7746587857577377,
"z": 1.9156025512243486
}
}
},
{
"obj_id": "1001",
"obj_type": "Truck",
"psr": {
"position": {
"x": -21.54366493847192,
"y": -15.28593041581101,
"z": 0.31162861999999997
},
"rotation": {
"x": -0.06061705351581413,
"y": 0.0005575736396516535,
"z": 3.1487339004759765
},
"scale": {
"x": 5.083309851403533,
"y": 1.7025087091290587,
"z": 2.2705067053039354
}
}
}
]

@ -0,0 +1,485 @@
[
{
"obj_id": "1",
"obj_type": "Car",
"psr": {
"position": {
"x": 4.784003790176939,
"y": -13.454661395730007,
"z": -0.5538587820529938
},
"rotation": {
"x": 0,
"y": 0,
"z": -1.5446163880149815
},
"scale": {
"x": 4.167753219604492,
"y": 1.9812848567962646,
"z": 1.858795166015625
}
}
},
{
"obj_id": "2",
"obj_type": "Car",
"psr": {
"position": {
"x": 3.586074486432309,
"y": -2.372378855929234,
"z": -1.0705697530267009
},
"rotation": {
"x": -0.06819227924229494,
"y": 0.002044793837571052,
"z": 4.740576049921166
},
"scale": {
"x": 5.076940947017958,
"y": 1.9168826499425866,
"z": 1.5
}
}
},
{
"obj_id": "4",
"obj_type": "Car",
"psr": {
"position": {
"x": 6.165892665278079,
"y": -44.80607990532485,
"z": 1.132732699999999
},
"rotation": {
"x": -0.053810528807219656,
"y": 0.0053141924483858785,
"z": 1.4369887449182623
},
"scale": {
"x": 4.500000000000001,
"y": 1.7126382376921478,
"z": 1.7071399206499345
}
}
},
{
"obj_id": "5",
"obj_type": "Rider",
"psr": {
"position": {
"x": 3.770858943291387,
"y": -32.91325129317749,
"z": 0.6915870000000004
},
"rotation": {
"x": 0,
"y": 0,
"z": 4.005606121419104
},
"scale": {
"x": 1.6596497400399342,
"y": 0.6739244576664531,
"z": 1.7
}
}
},
{
"obj_id": "6",
"obj_type": "Rider",
"psr": {
"position": {
"x": -9.866532331438066,
"y": -9.670873180843602,
"z": -0.46593372999999966
},
"rotation": {
"x": 0,
"y": 0,
"z": 4.638826826395679
},
"scale": {
"x": 1.6596497400399342,
"y": 0.6739244576664531,
"z": 1.7
}
}
},
{
"obj_id": "8",
"obj_type": "Car",
"psr": {
"position": {
"x": 7.053143610148254,
"y": -33.90999396215142,
"z": 0.603445
},
"rotation": {
"x": -0.05381384131006369,
"y": 0.0026916304823240986,
"z": 1.4802022338780045
},
"scale": {
"x": 4.5,
"y": 1.6788924984728437,
"z": 1.656933188116807
}
}
},
{
"obj_id": "11",
"obj_type": "Rider",
"psr": {
"position": {
"x": 11.308020884323923,
"y": -38.0037315949891,
"z": 0.6589369999999996
},
"rotation": {
"x": 0,
"y": 0,
"z": 1.6856137335188808
},
"scale": {
"x": 2.02508808259896,
"y": 0.6606454834491257,
"z": 1.7
}
}
},
{
"obj_id": "12",
"obj_type": "ScooterRider",
"psr": {
"position": {
"x": 14.859489880080266,
"y": 6.447929590857548,
"z": -1.5666677722506137
},
"rotation": {
"x": -0.05336847556558379,
"y": 0.0310775824138393,
"z": 1.5861208514888574
},
"scale": {
"x": 4.399971022524501,
"y": 1.7647274273743618,
"z": 2.3011966721519643
}
}
},
{
"obj_id": "13",
"obj_type": "Car",
"psr": {
"position": {
"x": 7.384257014309696,
"y": -17.53127955603184,
"z": -0.4020345000000003
},
"rotation": {
"x": -0.053129458150669544,
"y": 0,
"z": 1.561265466896798
},
"scale": {
"x": 4.590450000000001,
"y": 1.8,
"z": 1.4558852218914666
}
}
},
{
"obj_id": "15",
"obj_type": "Car",
"psr": {
"position": {
"x": 26.501654719824728,
"y": -20.017881528365823,
"z": -0.483382
},
"rotation": {
"x": 0,
"y": 0,
"z": -0.2570466758939278
},
"scale": {
"x": 4.5,
"y": 1.6458116836318435,
"z": 1.5
}
}
},
{
"obj_id": "20",
"obj_type": "Car",
"psr": {
"position": {
"x": -0.4221746774346684,
"y": -31.822508595860747,
"z": 0.8377380100000005
},
"rotation": {
"x": -0.06517306244786299,
"y": 0.00010959092045555565,
"z": 4.6871396826216944
},
"scale": {
"x": 4.921583727079626,
"y": 1.6458116836318435,
"z": 2.0017558148508505
}
}
},
{
"obj_id": "23",
"obj_type": "Car",
"psr": {
"position": {
"x": 14.86459317241679,
"y": 33.555465961537415,
"z": -3.1861439999999983
},
"rotation": {
"x": -0.06287060419300494,
"y": 0.044058144173183246,
"z": 1.6095676840298194
},
"scale": {
"x": 4.281595594230369,
"y": 1.6295165184473699,
"z": 1.7242113198564337
}
}
},
{
"obj_id": "27",
"obj_type": "Car",
"psr": {
"position": {
"x": 36.97714857076062,
"y": -22.4487879566715,
"z": -0.18954880000000002
},
"rotation": {
"x": 0,
"y": 0,
"z": 6.0389682435723016
},
"scale": {
"x": 4.5,
"y": 1.8,
"z": 1.5
}
}
},
{
"obj_id": "31",
"obj_type": "Pedestrian",
"psr": {
"position": {
"x": -18.973385988607333,
"y": -25.573029990466267,
"z": 0.9052889000000002
},
"rotation": {
"x": -0.005200816595089385,
"y": 0,
"z": 1.6649168109660173
},
"scale": {
"x": 0.5129727980068935,
"y": 0.5634125150659849,
"z": 1.7
}
}
},
{
"obj_id": "50",
"obj_type": "Rider",
"psr": {
"position": {
"x": 18.940376259623008,
"y": -25.913100597094086,
"z": -0.064444
},
"rotation": {
"x": 0,
"y": 0,
"z": 1.45273445713904
},
"scale": {
"x": 1.797162849996143,
"y": 1.3257591556815653,
"z": 1.8592649635634135
}
}
},
{
"obj_id": "51",
"obj_type": "Pedestrian",
"psr": {
"position": {
"x": 23.136293201736407,
"y": 13.815515606019003,
"z": -1.9757900000000008
},
"rotation": {
"x": 0,
"y": 0,
"z": 4.42358809379019
},
"scale": {
"x": 0.5285163867593005,
"y": 0.4571699121199565,
"z": 1.7515116999999998
}
}
},
{
"obj_id": "53",
"obj_type": "Pedestrian",
"psr": {
"position": {
"x": 19.483984140064422,
"y": 9.991123444156456,
"z": -1.680906800000001
},
"rotation": {
"x": 0,
"y": 0,
"z": 4.653458477625549
},
"scale": {
"x": 0.7412849208820917,
"y": 0.6806637022431177,
"z": 1.7
}
}
},
{
"obj_id": "54",
"obj_type": "Motor",
"psr": {
"position": {
"x": 23.854108593626734,
"y": 26.472013961329335,
"z": -2.765640999999999
},
"rotation": {
"x": 0,
"y": 0,
"z": -0.037857281871391146
},
"scale": {
"x": 1.7485658990665154,
"y": 1.0208318215505217,
"z": 1.5
}
}
},
{
"obj_id": "55",
"obj_type": "Pedestrian",
"psr": {
"position": {
"x": 31.86102411918546,
"y": -1.7469702631273432,
"z": -0.9479467999999999
},
"rotation": {
"x": 0,
"y": 0,
"z": 4.6225851649863845
},
"scale": {
"x": 0.5285163867593005,
"y": 0.4571699121199565,
"z": 1.7515116999999998
}
}
},
{
"obj_id": "56",
"obj_type": "Pedestrian",
"psr": {
"position": {
"x": 31.376673016919085,
"y": -6.1856712753724,
"z": -0.8114728499999998
},
"rotation": {
"x": 0,
"y": 0,
"z": 4.644110482942937
},
"scale": {
"x": 0.4,
"y": 0.5,
"z": 1.7
}
}
},
{
"obj_id": "81",
"obj_type": "Pedestrian",
"psr": {
"position": {
"x": -8.48876171313168,
"y": 0.6505407628575157,
"z": -0.6298729000000001
},
"rotation": {
"x": -0.005200816595089385,
"y": 0,
"z": 4.201519019875148
},
"scale": {
"x": 0.8668083543246112,
"y": 0.711262079972739,
"z": 1.7341699999999998
}
}
},
{
"obj_id": "82",
"obj_type": "Pedestrian",
"psr": {
"position": {
"x": -9.083890529840573,
"y": 1.1163202105149936,
"z": -0.5397099000000001
},
"rotation": {
"x": -0.005200816595089385,
"y": 0,
"z": 4.348478208149016
},
"scale": {
"x": 1.693008699814737,
"y": 0.7746587857577377,
"z": 1.9156025512243486
}
}
},
{
"obj_id": "1001",
"obj_type": "Truck",
"psr": {
"position": {
"x": -21.140372247155955,
"y": -12.74937781725756,
"z": 0.172017060029561
},
"rotation": {
"x": -0.06061705351581413,
"y": 0.0005575736396516535,
"z": 3.099867333931262
},
"scale": {
"x": 4.773545657333631,
"y": 1.7025087091290587,
"z": 2.2705067053039354
}
}
}
]

@ -0,0 +1,506 @@
[
{
"obj_id": "1",
"obj_type": "Van",
"psr": {
"position": {
"x": 4.850941318672994,
"y": -10.956022473988245,
"z": -0.48761864042484254
},
"rotation": {
"x": -0.002674811961455094,
"y": 0.10965160628151722,
"z": -1.544461511948178
},
"scale": {
"x": 4.13408170964613,
"y": 1.8086255198874306,
"z": 1.8003957009824072
}
}
},
{
"obj_id": "2",
"obj_type": "Car",
"psr": {
"position": {
"x": 3.88139926311851,
"y": -0.39950599842594453,
"z": -1.1686621480000001
},
"rotation": {
"x": -0.06819227924229494,
"y": 0.002044793837571052,
"z": 4.725015963715173
},
"scale": {
"x": 4.23920355864393,
"y": 1.7529416688834956,
"z": 1.5
}
}
},
{
"obj_id": "3",
"obj_type": "Bus",
"psr": {
"position": {
"x": 11.301814142992953,
"y": -20.922855153597094,
"z": 0.546278617
},
"rotation": {
"x": 0,
"y": 0.040543441913022456,
"z": 1.5018046754088288
},
"scale": {
"x": 10.4060401,
"y": 2.6116105531799785,
"z": 3.2164060563210306
}
}
},
{
"obj_id": "4",
"obj_type": "Car",
"psr": {
"position": {
"x": 6.557943947489548,
"y": -40.68523378018685,
"z": 1.0285126999999994
},
"rotation": {
"x": -0.053810528807219656,
"y": 0.0053141924483858785,
"z": 1.441521147905804
},
"scale": {
"x": 4.500000000000001,
"y": 1.7126382376921478,
"z": 1.7071399206499345
}
}
},
{
"obj_id": "5",
"obj_type": "Rider",
"psr": {
"position": {
"x": 3.3830302707647206,
"y": -30.362142126316222,
"z": 0.5857520000000003
},
"rotation": {
"x": 0,
"y": 0,
"z": 3.681492040356453
},
"scale": {
"x": 1.6596497400399342,
"y": 0.6739244576664531,
"z": 1.7
}
}
},
{
"obj_id": "6",
"obj_type": "Rider",
"psr": {
"position": {
"x": -9.976679027386126,
"y": -8.148731228418796,
"z": -0.5460304529047654
},
"rotation": {
"x": -0.06317162162260596,
"y": 0.015318565742633352,
"z": 4.474803464032996
},
"scale": {
"x": 1.5452174321894951,
"y": 0.5578088167506243,
"z": 1.5933563922247365
}
}
},
{
"obj_id": "8",
"obj_type": "Car",
"psr": {
"position": {
"x": 7.373873177974019,
"y": -29.272960420773632,
"z": 0.432106
},
"rotation": {
"x": -0.05381384131006369,
"y": 0.0026916304823240986,
"z": 1.5055063419654435
},
"scale": {
"x": 4.5,
"y": 1.6788924984728437,
"z": 1.656933188116807
}
}
},
{
"obj_id": "11",
"obj_type": "Rider",
"psr": {
"position": {
"x": 11.466985368202586,
"y": -33.377379928349065,
"z": 0.4561529999999994
},
"rotation": {
"x": 0,
"y": 0,
"z": 1.357548794704233
},
"scale": {
"x": 2.02508808259896,
"y": 0.6606454834491257,
"z": 1.7
}
}
},
{
"obj_id": "12",
"obj_type": "ScooterRider",
"psr": {
"position": {
"x": 15.002234320061689,
"y": 9.128632504918388,
"z": -2.0087403000000004
},
"rotation": {
"x": -0.05336847556558379,
"y": 0.0310775824138393,
"z": 1.5905931753624516
},
"scale": {
"x": 4.3676556656744,
"y": 1.6295165184473699,
"z": 1.7942212135299977
}
}
},
{
"obj_id": "13",
"obj_type": "Car",
"psr": {
"position": {
"x": 7.788851466328197,
"y": -10.98265509509204,
"z": -0.7437820000000004
},
"rotation": {
"x": -0.053129458150669544,
"y": 0,
"z": 1.56051056076012
},
"scale": {
"x": 4.590450000000001,
"y": 1.8,
"z": 1.4558852218914666
}
}
},
{
"obj_id": "15",
"obj_type": "Car",
"psr": {
"position": {
"x": 26.57291603721751,
"y": -17.15000239835484,
"z": -0.6
},
"rotation": {
"x": 0,
"y": 0,
"z": -0.22920367320510482
},
"scale": {
"x": 4.5,
"y": 1.6458116836318435,
"z": 1.5
}
}
},
{
"obj_id": "20",
"obj_type": "Car",
"psr": {
"position": {
"x": -0.4326601345492236,
"y": -32.81936725268655,
"z": 0.9197633000000003
},
"rotation": {
"x": -0.06517306244786299,
"y": 0.00010959092045555565,
"z": 4.668461499912884
},
"scale": {
"x": 4.921583727079626,
"y": 1.6458116836318435,
"z": 2.0017558148508505
}
}
},
{
"obj_id": "23",
"obj_type": "Car",
"psr": {
"position": {
"x": 14.854084900533053,
"y": 36.31688425244575,
"z": -3.494144999999998
},
"rotation": {
"x": -0.06287060419300494,
"y": 0.044058144173183246,
"z": 1.6017988530736593
},
"scale": {
"x": 4.281595594230369,
"y": 1.6295165184473699,
"z": 1.7242113198564337
}
}
},
{
"obj_id": "27",
"obj_type": "Car",
"psr": {
"position": {
"x": 36.95999624850447,
"y": -19.576731641457386,
"z": -0.39999999999999997
},
"rotation": {
"x": 0,
"y": 0,
"z": 6.052388980384655
},
"scale": {
"x": 4.5,
"y": 1.8,
"z": 1.5
}
}
},
{
"obj_id": "31",
"obj_type": "Pedestrian",
"psr": {
"position": {
"x": -18.866816697627655,
"y": -22.86282125027274,
"z": 0.8500000000000002
},
"rotation": {
"x": -0.005200816595089385,
"y": 0,
"z": 1.5907963267948966
},
"scale": {
"x": 0.5129727980068935,
"y": 0.5634125150659849,
"z": 1.7
}
}
},
{
"obj_id": "50",
"obj_type": "Rider",
"psr": {
"position": {
"x": 19.040406728319795,
"y": -21.31166831033424,
"z": -0.1791146
},
"rotation": {
"x": 0,
"y": 0,
"z": 1.6039243132190473
},
"scale": {
"x": 1.797162849996143,
"y": 1.3257591556815653,
"z": 1.8592649635634135
}
}
},
{
"obj_id": "51",
"obj_type": "Pedestrian",
"psr": {
"position": {
"x": 23.278827197860664,
"y": 16.02511764426481,
"z": -2.1734700000000005
},
"rotation": {
"x": 0,
"y": 0,
"z": 4.882149425192646
},
"scale": {
"x": 0.4,
"y": 0.5,
"z": 1.7
}
}
},
{
"obj_id": "53",
"obj_type": "Pedestrian",
"psr": {
"position": {
"x": 19.721963692594727,
"y": 12.073706740754263,
"z": -1.957951600000001
},
"rotation": {
"x": 0,
"y": 0,
"z": 4.550175243538672
},
"scale": {
"x": 0.7412849208820917,
"y": 0.6806637022431177,
"z": 1.7
}
}
},
{
"obj_id": "54",
"obj_type": "Motor",
"psr": {
"position": {
"x": 23.91011734575295,
"y": 29.285895469113342,
"z": -3.1570029999999982
},
"rotation": {
"x": 0,
"y": 0,
"z": 0.11633170712167873
},
"scale": {
"x": 1.7485658990665154,
"y": 1.0208318215505217,
"z": 1.5
}
}
},
{
"obj_id": "55",
"obj_type": "Pedestrian",
"psr": {
"position": {
"x": 32.297311349146185,
"y": 0.47968242174995096,
"z": -0.9565367999999999
},
"rotation": {
"x": 0,
"y": 0,
"z": 4.37493354637721
},
"scale": {
"x": 0.5285163867593005,
"y": 0.4571699121199565,
"z": 1.7515116999999998
}
}
},
{
"obj_id": "56",
"obj_type": "Pedestrian",
"psr": {
"position": {
"x": 31.34751781797604,
"y": -2.787654273957376,
"z": -0.9473519999999997
},
"rotation": {
"x": 0,
"y": 0,
"z": 1.2405159345228731
},
"scale": {
"x": 0.4,
"y": 0.5,
"z": 1.7
}
}
},
{
"obj_id": "81",
"obj_type": "Pedestrian",
"psr": {
"position": {
"x": -8.663487089328555,
"y": 2.770711530826073,
"z": -0.7839459000000002
},
"rotation": {
"x": -0.005200816595089385,
"y": 0,
"z": 4.300758489293951
},
"scale": {
"x": 0.76374659526974,
"y": 0.7083013780156343,
"z": 1.7341699999999998
}
}
},
{
"obj_id": "82",
"obj_type": "Pedestrian",
"psr": {
"position": {
"x": -9.424296512588144,
"y": 2.881378801540134,
"z": -0.6853220949094945
},
"rotation": {
"x": -0.005200816595089385,
"y": 0,
"z": 4.370040436014779
},
"scale": {
"x": 2.377152468109147,
"y": 0.7746587857577377,
"z": 1.9156025512243486
}
}
},
{
"obj_id": "1001",
"obj_type": "Truck",
"psr": {
"position": {
"x": -21.12969353464381,
"y": -9.232904261081396,
"z": -0.37339159297459545
},
"rotation": {
"x": 0.025047730911594995,
"y": -0.0015804909276805725,
"z": 3.1166765109083716
},
"scale": {
"x": 5.083309851403533,
"y": 1.7025087091290587,
"z": 2.2705067053039354
}
}
}
]

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.1 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.0 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.7 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 721 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 543 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.1 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1017 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.4 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 53 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

@ -0,0 +1,36 @@
# Introduction
[uWSGI](https://uwsgi-docs.readthedocs.io/)
You can run it with `python ./main.py` or `uwsgi --ini uwsgi.ini`
# Requirements
```
pip install uwsgi
```
# Config
```
--- file: uwsgi.ini ---
[uwsgi]
# Set the IP and Port.
http = 0.0.0.0:8092
# **Importance**: Need rewrite the value of chdir key
chdir = /root/SUSTechPOINTS
module = main:application
master = true
buffer-size = 65536
processes = 4
threads = 2
```
# Run
```
uwsgi --ini uwsgi.ini
```

@ -0,0 +1,30 @@
### Docker
#### Install Docker(安装Docker)
```
sudo apt install -y docker docker.io docker-registry
```
#### Build Image yourself(自行创建镜像, 较为繁琐)
```
cd Docker
# Build docker image (构建镜像)
sudo docker build -t sustechpoints:v1.0.0 .
# Create container of server ,Please replace ${YourDataPath} with the path where you put data on (创建容器, 请将用你的数据存储路径将变量${YourDataPath}替换, 注意数据要符合data/example中的组织方式)
sudo docker run -it -d --restart=always --name STPointsSServer -p 8081:8081 -v ${YourDataPath}:/root/SUSTechPOINTS/data sustechpoints:v1.0.0 bash
```
#### Use docker image of dockerhub(使用现有镜像, 不保证代码为最新)
```
sudo docker run -it -d --restart=always -p 8081:8081 juhaoming/sustechpoints:v1.0.0 bash
sudo docker run -it -d --restart=always -p 8081:8081 -v ${YourDataPath}:/root/SUSTechPOINTS/data juhaoming/sustechpoints:v1.0.0 bash
```

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.7 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 8.7 KiB

@ -0,0 +1,73 @@
### Install
0. clone the project
```
git clone https://github.com/naurril/SUSTechPOINTS
```
1. Install packages
```
pip install -r requirement.txt
```
2. Download model
download pretrained model file [deep_annotation_inference.h5](https://github.com/naurril/SUSTechPOINTS/releases/download/0.1/deep_annotation_inference.h5), put it into `./algos/models`
```
wget https://github.com/naurril/SUSTechPOINTS/releases/download/0.1/deep_annotation_inference.h5 -P algos/models
```
### Start
Run the following command in shell, then go to http://127.0.0.1:8081
```
python main.py
```
## Object type configuration
Default object configuration is in [obj_cfg.js](src/public/js/../../../public/js/obj_cfg.js)
Adjust the contents to customize.
## Data preparation
````
+- data
+- scene1
+- lidar
+- 0000.pcd
+- 0001.pcd
+- camera
+- front
+- 0000.jpg
+- 0001.jpg
+- left
+- ...
+- aux_lidar
+- front
+- 0000.pcd
+- 0001.pcd
+- radar
+- front_points
+- 0000.pcd
+- 0001.pcd
+- front_tracks
+- ...
+- calib
+- camera
+- front.json
+- left.json
+- radar
+- front_points.json
+- front_tracks.json
+- label
+- 0000.json
+- 0001.json
+- scene2
````
label is the directory to save the annotation result.
calib is the calibration matrix from point cloud to image. it's optional, but if provided, the box is projected on the image so as to assist the annotation.
check examples in `./data/example`

Binary file not shown.

After

Width:  |  Height:  |  Size: 994 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 86 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 26 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 24 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 60 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 47 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 20 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 57 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 21 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 20 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 20 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 51 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 29 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 21 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 24 KiB

@ -0,0 +1,93 @@
### Add a new box
You have 2 ways to add a new box:
1. Right click on an object, choose object type in popup context menu
1. Holding Ctrl, draw a rectangle enclosing the object.
Hint:
1. Adjust the main view so that the objects (e.g. cars) are heading upward or downward along the screen, use 'g' if the direction need to be reversed, use 'r' or 'f' to adjust the yaw angle (z-axis rotation)
1. Adjust the main view so it's almost in bird's eye view. (direct bird's eye view support is not complete yet)
### Main View
```
mouse scroll up/down: zoom in/out
mouse left key hold/move: rotate (change main view)
mouse right key hold/move: pan
left click on a box: select
left click on a selected box: show transform control
left click on non-box area: hide transform control if present, or unselect box
Ctrl+mouse drag: add a new box
Shift+mouse drag: add a new box, w/o automatic box fitting
Right click to show popup menu.
-/=: adjust point size
When transform control is enabled:
v: switch transform modes among resize/translate/rotate
z/x/c: turan on/off x/y/z axis
use mouse to adjust the box.
del/ctrl+d remove selected box
1,2 select previous/next box
3,4, or pageup/pagedown show previous/next frame in current scene
5,6,7 show camera helper box of sideviews.
space: pause/continue stream play
when a box is selected:
t: show object trajectory
del: delete the box
ctrl+d: delete the box
a,s,d,w,r,f,g: save as operations in top-view.
v: enter batch-edit mode
when transform control in perspective view is active:
z/x/c: toggle x/y/z asix handle
v: switch among dimension/rotation/position
```
### sub-view (projective view)
```
note:
- in perspective view, all keyboard operations are same as operating in top-view
- these shortcuts are applicable when a subview is activated by placing the mouse over it.
a: move box left
s: move box down
d: move box right
w: move box up
q: rotate box counterclockwise
e: rotate box clockwise
r: rotate box counterclockwise, with box auto-fitting
f: rotate box clockwise, with box auto-fitting
g: reverse heading direction (rotate by PI)
double click on center: auto-shrink box by adjusting all borders to nearest innner point.
double click on border: auto-shrink box by adjusting the border to nearest innner point.
double click on corner: auto-shrink box by adjusting the corresponding borders to nearest innner point.
drag border/corner/center: move border/corner/box.
ctrl + drag border/corner: move border/corner/box with box auto-fitting
Shft + drag border/corner: move border/corner/box with box auto-fitting while keeping the box size
mouse scroll up/down: zoom in/out the view
```
### batch-editing mode
```
t: show object trajectory
3/pageup: prev batch, or prev object (if one batch shows the whole scene)
4/pagedown: nex batch, or next object (if one batch shows the whole scene)
v/Escape: exit batch mode
+/=/-: increase/decrease point size
when context menu shown, the underscored char is the corresponding key shortcut.
```

Binary file not shown.

After

Width:  |  Height:  |  Size: 39 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 834 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 761 KiB

@ -0,0 +1,72 @@
#### box操作视图
鼠标移动到对应区域有效,主界面及批量编辑界面均适用
||键|操作|说明|
|----|----|------|------|
||a/左|左移||
||s/下|下移||
||d/右|右移||
||w/上|上移||
||q|逆时针旋转||
||e|顺时针旋转||
||r|逆时针旋转同时自动调整box大小||
||f|顺时针选择同时自动调整box大小||
||g|反向||
||Delete/Ctrl+d|删除||
||Ctrl|按住ctrl用鼠标拖动box会自动收缩box||
||Shift|按住shift用鼠标拖动box会移动box但保持box大小不变||
#### 主视图区域
||键|操作|说明|
|----|----|------|------|
||+/=|增加点的大小||
||-|减小点的大小||
||1|前一个box||
||2|后一个box||
||3/PageUp|前一帧||
||4/PageDown|后一帧||
||5/6/7|显示camera|调试用|
||p|截屏||
|| 空格|暂停/继续|播放时有效|
||Ctrl+s|全部保存||
选中某个box后
||键|操作|说明|
|----|----|------|------|
||Delete|删除选择的box||
||Escape|如果选中了box取消选择如果在3d编辑模式取消编辑如果在focus模式退出||
||a/s/w/d/q/e/r/f/g|同俯视图的box操作||
||t|显示轨迹||
||v|进入/退出批量编辑模式||
||z/x/c| 3D编辑模式下切换x/y/z轴||
#### 批量编辑界面
||键|操作|说明|
|----|----|------|------|
||Ctrl+a| 全选||
||Ctrl+s| 保存||
||+/= | 放大点||
||-| 缩小点||
||v/Escape|退出批量编辑模式||
||3/pageUP| 上一批或者上一个object||
||4/Pagedown| 下一批或者下个object||
||t|显示轨迹||
右键弹出时
菜单选项中有带下划线的字母,即为对应的键
||键|操作|说明|
|----|----|------|------|
||s|全选||
||a|auto-annotate||
||f|finalize||
||d|delete||
||e|interpolate||
||g|跳到对应的帧||
||t|显示轨迹||

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

@ -0,0 +1,16 @@
```
globle_scene
cameraHelper
world: webgl-group
+ lidar
+ annotations: group
+ box
+ box
+ boxeditor.boxView.view: cameraContainer
+ camera
+ auxlidar
+ radar
world
world
```

@ -0,0 +1,35 @@
# Config file for GO-ICP
# Mean Squared Error (MSE) convergence threshold
mse_thresh: 0.001
# Smallest rotation value along dimension X/Y/Z of rotation cube (radians)
rot_min_x: 3.1416
rot_min_y: 3.1416
rot_min_z: 3.1416
# Side length of each dimension of rotation cube (radians)
rot_width: 6.2832
# Smallest translation value along dimension X/Y/Z of translation cube
trans_min_x: -0.5
trans_min_y: -0.5
trans_min_z: -0.5
# Side length of each dimension of translation cube
trnas_min_width: 1.0
# Set to 0.0 for no trimming
trim_fraction: 0.0
# Nodes per dimension of distance transform
dist_trans_size: 100
# DistanceTransformWidth = ExpandFactor x WidthLargestDimension
dist_trans_expand_factor: 2.0
#target_pcd_filename: "1563421456.330479000.pcd"
#source_pcd_filename: "1563421457.741678000.pcd"
target_pcd_filename: "out551.pcd"
source_pcd_filename: "out557.pcd"

File diff suppressed because it is too large Load Diff

@ -0,0 +1,238 @@
import random
import string
import cherrypy
import os
import json
from jinja2 import Environment, FileSystemLoader
env = Environment(loader=FileSystemLoader('./'))
import os
import sys
import scene_reader
from tools import check_labels as check
# BASE_DIR = os.path.dirname(os.path.abspath(__file__))
# sys.path.append(BASE_DIR)
#sys.path.append(os.path.join(BASE_DIR, './algos'))
#import algos.rotation as rotation
from algos import pre_annotate
#sys.path.append(os.path.join(BASE_DIR, '../tracking'))
#import algos.trajectory as trajectory
# extract_object_exe = "~/code/pcltest/build/extract_object"
# registration_exe = "~/code/go_icp_pcl/build/test_go_icp"
# sys.path.append(os.path.join(BASE_DIR, './tools'))
# import tools.dataset_preprocess.crop_scene as crop_scene
class Root(object):
@cherrypy.expose
def index(self, scene="", frame=""):
tmpl = env.get_template('index.html')
return tmpl.render()
@cherrypy.expose
def icon(self):
tmpl = env.get_template('test_icon.html')
return tmpl.render()
@cherrypy.expose
def ml(self):
tmpl = env.get_template('test_ml.html')
return tmpl.render()
@cherrypy.expose
def reg(self):
tmpl = env.get_template('registration_demo.html')
return tmpl.render()
@cherrypy.expose
def view(self, file):
tmpl = env.get_template('view.html')
return tmpl.render()
# @cherrypy.expose
# def saveworld(self, scene, frame):
# # cl = cherrypy.request.headers['Content-Length']
# rawbody = cherrypy.request.body.readline().decode('UTF-8')
# with open("./data/"+scene +"/label/"+frame+".json",'w') as f:
# f.write(rawbody)
# return "ok"
@cherrypy.expose
def saveworldlist(self):
# cl = cherrypy.request.headers['Content-Length']
rawbody = cherrypy.request.body.readline().decode('UTF-8')
data = json.loads(rawbody)
for d in data:
scene = d["scene"]
frame = d["frame"]
ann = d["annotation"]
with open("./data/"+scene +"/label/"+frame+".json",'w') as f:
json.dump(ann, f, indent=2, sort_keys=True)
return "ok"
@cherrypy.expose
@cherrypy.tools.json_out()
def cropscene(self):
rawbody = cherrypy.request.body.readline().decode('UTF-8')
data = json.loads(rawbody)
rawdata = data["rawSceneId"]
timestamp = rawdata.split("_")[0]
print("generate scene")
log_file = "temp/crop-scene-"+timestamp+".log"
cmd = "python ./tools/dataset_preprocess/crop_scene.py generate "+ \
rawdata[0:10]+"/"+timestamp + "_preprocessed/dataset_2hz " + \
"- " +\
data["startTime"] + " " +\
data["seconds"] + " " +\
"\""+ data["desc"] + "\"" +\
"> " + log_file + " 2>&1"
print(cmd)
code = os.system(cmd)
with open(log_file) as f:
log = list(map(lambda s: s.strip(), f.readlines()))
os.system("rm "+log_file)
return {"code": code,
"log": log
}
@cherrypy.expose
@cherrypy.tools.json_out()
def checkscene(self, scene):
ck = check.LabelChecker(os.path.join("./data", scene))
ck.check()
print(ck.messages)
return ck.messages
# data N*3 numpy array
@cherrypy.expose
@cherrypy.tools.json_out()
def predict_rotation(self):
cl = cherrypy.request.headers['Content-Length']
rawbody = cherrypy.request.body.readline().decode('UTF-8')
data = json.loads(rawbody)
return {"angle": pre_annotate.predict_yaw(data["points"])}
#return {}
@cherrypy.expose
@cherrypy.tools.json_out()
def auto_annotate(self, scene, frame):
print("auto annotate ", scene, frame)
return pre_annotate.annotate_file('./data/{}/lidar/{}.pcd'.format(scene,frame))
@cherrypy.expose
@cherrypy.tools.json_out()
def load_annotation(self, scene, frame):
return scene_reader.read_annotations(scene, frame)
@cherrypy.expose
@cherrypy.tools.json_out()
def load_ego_pose(self, scene, frame):
return scene_reader.read_ego_pose(scene, frame)
@cherrypy.expose
@cherrypy.tools.json_out()
def loadworldlist(self):
rawbody = cherrypy.request.body.readline().decode('UTF-8')
worldlist = json.loads(rawbody)
anns = list(map(lambda w:{
"scene": w["scene"],
"frame": w["frame"],
"annotation":scene_reader.read_annotations(w["scene"], w["frame"])},
worldlist))
return anns
@cherrypy.expose
@cherrypy.tools.json_out()
def datameta(self):
return scene_reader.get_all_scenes()
@cherrypy.expose
@cherrypy.tools.json_out()
def scenemeta(self, scene):
return scene_reader.get_one_scene(scene)
@cherrypy.expose
@cherrypy.tools.json_out()
def get_all_scene_desc(self):
return scene_reader.get_all_scene_desc()
@cherrypy.expose
@cherrypy.tools.json_out()
def objs_of_scene(self, scene):
return self.get_all_objs(os.path.join("./data",scene))
def get_all_objs(self, path):
label_folder = os.path.join(path, "label")
if not os.path.isdir(label_folder):
return []
files = os.listdir(label_folder)
files = filter(lambda x: x.split(".")[-1]=="json", files)
def file_2_objs(f):
with open(f) as fd:
boxes = json.load(fd)
objs = [x for x in map(lambda b: {"category":b["obj_type"], "id": b["obj_id"]}, boxes)]
return objs
boxes = map(lambda f: file_2_objs(os.path.join(path, "label", f)), files)
# the following map makes the category-id pairs unique in scene
all_objs={}
for x in boxes:
for o in x:
k = str(o["category"])+"-"+str(o["id"])
if all_objs.get(k):
all_objs[k]['count']= all_objs[k]['count']+1
else:
all_objs[k]= {
"category": o["category"],
"id": o["id"],
"count": 1
}
return [x for x in all_objs.values()]
if __name__ == '__main__':
cherrypy.quickstart(Root(), '/', config="server.conf")
else:
application = cherrypy.Application(Root(), '/', config="server.conf")

@ -0,0 +1,79 @@
from fastapi import FastAPI, Request
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
from router import router
# 1. 创建 FastAPI 应用实例
app = FastAPI(
title="Annotation Tool API",
description="从 CherryPy 转换而来的标注工具 API",
version="2.0.0"
)
# 2. 设置 Jinja2 模板
# CherryPy 的 FileSystemLoader('./') 对应 FastAPI 的 directory="."
templates = Jinja2Templates(directory=".")
# 3. 挂载静态文件 (对应 server.conf)
# app.mount("路径", StaticFiles(directory="本地目录"), name="唯一名称")
app.mount("/static", StaticFiles(directory="public"), name="public")
app.mount("/data", StaticFiles(directory="data"), name="data")
app.mount("/temp", StaticFiles(directory="temp"), name="temp")
app.mount("/views", StaticFiles(directory="views"), name="views")
app.mount("/assets", StaticFiles(directory="assets"), name="assets")
# 4. 定义 Pydantic 模型用于请求体验证
# 这比直接解析 JSON 更安全、更清晰
# 5. 将 CherryPy 的类方法转换为 FastAPI 路由函数
# --- HTML 页面路由 ---
@app.get("/icon")
def icon(request: Request):
"""渲染测试图标页"""
return templates.TemplateResponse("test_icon.html", {"request": request})
@app.get("/ml")
def ml(request: Request):
"""渲染测试 ML 页"""
return templates.TemplateResponse("test_ml.html", {"request": request})
@app.get("/reg")
def reg(request: Request):
"""渲染注册演示页"""
return templates.TemplateResponse("registration_demo.html", {"request": request})
@app.get("/view/{file_path:path}")
def view(request: Request, file_path: str):
"""渲染查看页,:path 允许路径中包含斜杠"""
# 原始代码没有使用 file 参数,这里保持一致
return templates.TemplateResponse("view.html", {"request": request})
# --- API 接口路由 ---
@app.get("/")
def index(request: Request, scene: str = "", frame: str = ""):
"""渲染主页"""
return templates.TemplateResponse("index.html", {"request": request})
app.include_router(router)
# 6. 启动服务器 (对应 if __name__ == '__main__')
# 在命令行运行: uvicorn main:app --host 0.0.0.0 --port 8081 --reload
if __name__ == "__main__":
import uvicorn
print("Starting FastAPI server...")
# server.conf 中的 host 和 port 在这里配置
uvicorn.run(
app,
host="0.0.0.0",
port=8081
)

@ -0,0 +1,9 @@
1. the views on the left are 3 orthographical cameras installed in the scene according to the selected box. keys 5/6/7 to show/hide the installed camera frames.
2. we use rear-view, other than front-view, so that when we adjust the position of box, this view moves
in the same direction as the top-down view, otherwise it would be very confusing (imagine the box in the
first view moves right but in the second view moves left.)
2. the main view is a perspective camera by default.

File diff suppressed because one or more lines are too long

@ -0,0 +1,61 @@
.docIcon
{
background:#eee;
background: linear-gradient(top, #ddd 0, #eee 15%, #fff 40%, #fff 70%, #eee 100%);
border:1px solid #ccc;
display:block;
width:40px;
height:56px;
position:relative;
margin:0px auto;
box-shadow:inset rgba(255,255,255,0.8) 0 1px 1px;
text-indent:-9999em;
border-radius:0px 15px 8px 3px;
}
.docIcon:before {
content: "";
display: block;
position: absolute;
top: 0;
right: 0;
width: 15px;
height: 15px;
background: #ccc;
background: -webkit-linear-gradient(45deg, #fff 0, #eee 50%, #ccc 100%);
background: -moz-linear-gradient(45deg, #fff 0, #eee 50%, #ccc 100%);
background: -o-linear-gradient(45deg, #fff 0, #eee 50%, #ccc 100%);
background: -ms-linear-gradient(45deg, #fff 0, #eee 50%, #ccc 100%);
background: linear-gradient(45deg, #fff 0, #eee 50%, #ccc 100%);
-webkit-box-shadow: rgba(0,0,0,0.05) -1px 1px 1px, inset white 0 0 1px;
-moz-box-shadow: rgba(0,0,0,0.05) -1px 1px 1px, inset white 0 0 1px;
box-shadow: rgba(0,0,0,0.05) -1px 1px 1px, inset white 0 0 1px;
border-bottom: 1px solid #ccc;
border-left: 1px solid #ccc;
-webkit-border-radius:3px 15px 3px 3px;
-moz-border-radius:3px 15px 3px 3px;
border-radius:3px 15px 3px 3px;
}
.docIcon:after
{
content:"";
display:block;
position:absolute;
left:0;
top:0;
width:60%;
margin:22px 20% 0;
height:15px;
background:#ccc;
background: -webkit-linear-gradient(top, #ccc 0, #ccc 20%, #fff 20%, #fff 40%, #ccc 40%, #ccc 60%, #fff 60%, #fff 80%, #ccc 80%, #ccc 100%);
background: -moz-linear-gradient(top, #ccc 0, #ccc 20%, #fff 20%, #fff 40%, #ccc 40%, #ccc 60%, #fff 60%, #fff 80%, #ccc 80%, #ccc 100%);
background: -o-linear-gradient(top, #ccc 0, #ccc 20%, #fff 20%, #fff 40%, #ccc 40%, #ccc 60%, #fff 60%, #fff 80%, #ccc 80%, #ccc 100%);
background: -ms-linear-gradient(top, #ccc 0, #ccc 20%, #fff 20%, #fff 40%, #ccc 40%, #ccc 60%, #fff 60%, #fff 80%, #ccc 80%, #ccc 100%);
background:linear-gradient(top, #ccc 0, #ccc 20%, #fff 20%, #fff 40%, #ccc 40%, #ccc 60%, #fff 60%, #fff 80%, #ccc 80%, #ccc 100%);
}

File diff suppressed because it is too large Load Diff

@ -0,0 +1,29 @@
body {
margin: 0;
background-color: #000;
color: #fff;
font-family: Monospace;
font-size: 13px;
line-height: 24px;
}
#info {
position: absolute;
top: 0px;
color: #ffff00;
font-size: 10px;
text-align: left;
z-index: 1; /* TODO Solve this in HTML */
}
td {
text-align: right;
}
.selectBox {
border: 1px solid #55aaff;
background-color: rgba(75, 160, 255, 0.3);
position: fixed;
}

@ -0,0 +1,48 @@
<?xml version="1.0" encoding="iso-8859-1"?>
<!-- Generator: Adobe Illustrator 16.0.0, SVG Export Plug-In . SVG Version: 6.00 Build 0) -->
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg version="1.1" id="Capa_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
width="972px" height="972px" viewBox="0 0 972 972" style="enable-background:new 0 0 972 972;" xml:space="preserve">
<g>
<path d="M894.2,832.662v-57.6H747.9v57.6C748.3,934.562,894.2,935.763,894.2,832.662z"/>
<path d="M223.4,832.662v-57.6H77.7v57.6C77.5,935.763,223.4,934.562,223.4,832.662z"/>
<path d="M972,655.062v-202c-0.2-70.4-56.3-107.6-88.2-111.7l-79.7-205.7c-14.899-39.4-47.5-72.9-109.1-73.2H582.7h-192H276.3
c-61.3,0.3-93.9,33.8-109.1,73.2l-79.7,205.7c-31.6,4.1-87.6,41.3-87.5,111.7v202c0,33.1,26.9,60,60,60h852
C945.1,715.062,972,688.263,972,655.062z M163,566.962c-0.1,0-0.1,0-0.2,0c-0.1,0-0.1,0-0.2,0c-37.2,0-67.2-31-67.1-69.199
c-0.2-38.301,29.7-69.301,66.7-69.301c0.2,0,0.4,0,0.6,0c0.2,0,0.4,0,0.6,0c36.9,0,66.8,31,66.7,69.301
C230.2,535.962,200.1,566.962,163,566.962z M486,339.462h-0.7H235.9c-22,0-36.9-22.4-28.3-42.7l42-99.3
c6.3-15.7,18.5-39.5,45.1-39.9h381.7c26.199,0.4,32.8,15.1,45.1,39.9l42,99.3c8.6,20.3-6.3,42.7-28.3,42.7H486L486,339.462z
M804.3,571.962c-0.1,0-0.1,0-0.2,0c-0.1,0-0.1,0-0.199,0c-37.4,0-67.5-31-67.7-69.199c0.2-38.301,30.1-69.301,67.399-69.301
c0.2,0,0.4,0,0.601,0s0.399,0,0.6,0c36.601,0,66.5,31,66.7,69.301C871.2,540.962,841.1,571.962,804.3,571.962z"/>
</g>
<g>
</g>
<g>
</g>
<g>
</g>
<g>
</g>
<g>
</g>
<g>
</g>
<g>
</g>
<g>
</g>
<g>
</g>
<g>
</g>
<g>
</g>
<g>
</g>
<g>
</g>
<g>
</g>
<g>
</g>
</svg>

After

Width:  |  Height:  |  Size: 1.7 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 43 KiB

@ -0,0 +1,591 @@
import * as THREE from './lib/three.module.js';
import {globalObjectCategory} from './obj_cfg.js';
import {saveWorldList} from "./save.js"
import { intersect } from './util.js';
function Annotation(sceneMeta, world, frameInfo){
this.world = world;
this.data = this.world.data;
//this.coordinatesOffset = this.world.coordinatesOffset;
this.boxes_load_time = 0;
this.frameInfo = frameInfo;
this.modified = false;
this.setModified = function(){
this.modified=true;
if (pointsGlobalConfig.autoSave)
{
saveWorldList([this.world]);
}
};
this.resetModified = function(){this.modified=false;};
this.sort_boxes = function(){
this.boxes = this.boxes.sort(function(x,y){
return x.position.y - y.position.y;
});
};
this.findBoxByTrackId = function(id){
if (this.boxes){
let box = this.boxes.find(function(x){
return x.obj_track_id == id;
});
return box;
}
return null;
};
this.findIntersectedBoxes = function(box){
return this.boxes.filter(b=>b!=box).filter(b=>intersect(box, b));
};
this.preload = function(on_preload_finished){
this.on_preload_finished = on_preload_finished;
this.load_annotation((boxes)=>this.proc_annotation(boxes));
};
this.go_cmd_received = false;
this.webglScene = null;
this.on_go_finished = null;
this.go = function(webglScene, on_go_finished){
this.webglScene = webglScene;
if (this.preloaded){
//this.boxes.forEach(b=>this.webglScene.add(b));
if (this.data.cfg.color_obj != "no"){
this.color_boxes();
}
if (on_go_finished)
on_go_finished();
} else {
this.go_cmd_received = true;
this.on_go_finished = on_go_finished;
}
};
// internal funcs below
this._afterPreload = function(){
this.preloaded = true;
console.log("annotation preloaded");
if (this.on_preload_finished){
this.on_preload_finished();
}
if (this.go_cmd_received){
this.go(this.webglScene, this.on_go_finished);
}
};
this.unload = function(){
if (this.boxes){
this.boxes.forEach((b)=>{
//this.webglGroup.remove(b);
if (b.boxEditor)
b.boxEditor.detach();
});
}
};
this.deleteAll = function(){
this.remove_all_boxes();
};
this.boxToAnn = function(box){
let ann = {
psr: {
position:{
x: box.position.x,
y: box.position.y,
z: box.position.z,
},
scale:{
x: box.scale.x,
y: box.scale.y,
z: box.scale.z,
},
rotation:{
x:box.rotation.x,
y:box.rotation.y,
z:box.rotation.z,
},
},
obj_type: box.obj_type,
obj_id: String(box.obj_track_id),
obj_attr: box.obj_attr,
//vertices: vertices,
};
return ann;
};
this.toBoxAnnotations = function(){
let anns = this.boxes.map((b)=>{
//var vertices = psr_to_xyz(b.position, b.scale, b.rotation);
let ann = this.boxToAnn(b);
if (b.annotator)
ann.annotator = b.annotator;
if (b.follows)
ann.follows = b.follows;
return ann;
});
anns.sort((a,b)=>a.obj_id- b.obj_id);
return anns;
};
// to real-world position (no offset)
this.ann_to_vector_global = function(box) {
let posG = this.world.lidarPosToScene(box.position);
let rotG = this.world.lidarRotToScene(box.rotation);
return [
posG.x - this.world.coordinatesOffset[0], posG.y-this.world.coordinatesOffset[1], posG.z-this.world.coordinatesOffset[2],
rotG.x, rotG.y, rotG.z,
box.scale.x, box.scale.y, box.scale.z,
];
};
// real-world position to ann
this.vector_global_to_ann = function(v)
{
let posG = new THREE.Vector3(v[0]+this.world.coordinatesOffset[0],
v[1]+this.world.coordinatesOffset[1],
v[2]+this.world.coordinatesOffset[2]);
let rotG = new THREE.Euler(v[3],v[4],v[5]);
let rotL = this.world.sceneRotToLidar(rotG);
let posL = this.world.scenePosToLidar(posG);
return {
position: {x: posL.x, y: posL.y, z: posL.z},
rotation: {x: rotL.x, y: rotL.y, z: rotL.z},
scale: {x: v[6], y: v[7], z: v[8]}
};
};
// this.vector_to_ann = function(v){
// return {
// position:{
// x:v[0],// + this.coordinatesOffset[0],
// y:v[1],// + this.coordinatesOffset[1],
// z:v[2],// + this.coordinatesOffset[2],
// },
// rotation:{
// x:v[3],
// y:v[4],
// z:v[5],
// },
// scale:{
// x:v[6],
// y:v[7],
// z:v[8],
// },
// };
// };
this.remove_all_boxes = function(){
if (this.boxes){
this.boxes.forEach((b)=>{
this.webglGroup.remove(b);
this.world.data.dbg.free();
b.geometry.dispose();
b.material.dispose();
b.world = null;
b.boxEditor = null;
});
this.boxes = [];
}
else{
console.error("destroy empty world!")
}
};
this.new_bbox_cube=function(color){
var h = 0.5;
var body = [
//top
-h,h,h, h,h,h,
h,h,h, h,-h,h,
h,-h,h, -h,-h,h,
-h,-h,h, -h, h, h,
//botom
-h,h,-h, h,h,-h,
h,h,-h, h,-h,-h,
h,-h,-h, -h,-h,-h,
-h,-h,-h, -h, h, -h,
// vertical lines
-h,h,h, -h,h,-h,
h,h,h, h,h,-h,
h,-h,h, h,-h,-h,
-h,-h,h, -h,-h,-h,
//direction
h, 0, h, 1.5*h, 0, h,
//h/2, -h, h+0.1, h, 0, h+0.1,
//h/2, h, h+0.1, h, 0, h+0.1,
//side direction
// h, h/2, h, h, h, 0,
// h, h/2, -h, h, h, 0,
// h, 0, 0, h, h, 0,
];
this.world.data.dbg.alloc();
var bbox = new THREE.BufferGeometry();
bbox.setAttribute( 'position', new THREE.Float32BufferAttribute(body, 3 ) );
if (!color){
color = 0x00ff00;
}
/*
https://threejs.org/docs/index.html#api/en/materials/LineBasicMaterial
linewidth is 1, regardless of set value.
*/
var material = new THREE.LineBasicMaterial( { color: color, linewidth: 1, opacity: this.data.cfg.box_opacity, transparent: true } );
var box = new THREE.LineSegments( bbox, material );
box.scale.x=1.8;
box.scale.y=4.5;
box.scale.z=1.5;
box.name="bbox";
box.obj_type="car";
//box.computeLineDistances();
return box;
};
this.createCuboid = function(pos, scale, rotation, obj_type, track_id, obj_attr){
let mesh = this.new_bbox_cube(parseInt("0x"+globalObjectCategory.get_obj_cfg_by_type(obj_type).color.slice(1)));
mesh.position.x = pos.x;
mesh.position.y = pos.y;
mesh.position.z = pos.z;
mesh.scale.x = scale.x;
mesh.scale.y = scale.y;
mesh.scale.z = scale.z;
mesh.rotation.x = rotation.x;
mesh.rotation.y = rotation.y;
mesh.rotation.z = rotation.z;
mesh.obj_track_id = track_id; //tracking id
mesh.obj_type = obj_type;
mesh.obj_attr = obj_attr;
mesh.obj_local_id = this.get_new_box_local_id();
mesh.world = this.world;
return mesh;
};
/*
pos: offset position, after transformed
*/
this.add_box=function(pos, scale, rotation, obj_type, track_id, obj_attr){
let mesh = this.createCuboid(pos, scale, rotation, obj_type, track_id, obj_attr)
this.boxes.push(mesh);
this.sort_boxes();
this.webglGroup.add(mesh);
return mesh;
};
this.load_box = function(box){
this.webglGroup.add(box);
};
this.unload_box = function(box){
this.webglGroup.remove(box);
};
this.remove_box=function(box){
this.world.data.dbg.free();
box.geometry.dispose();
box.material.dispose();
//selected_box.dispose();
this.boxes = this.boxes.filter(function(x){return x !=box;});
};
this.set_box_opacity=function(box_opacity){
this.boxes.forEach(function(x){
x.material.opacity = box_opacity;
});
};
this.translate_box_position=function(pos, theta, axis, delta){
switch (axis){
case 'x':
pos.x += delta*Math.cos(theta);
pos.y += delta*Math.sin(theta);
break;
case 'y':
pos.x += delta*Math.cos(Math.PI/2 + theta);
pos.y += delta*Math.sin(Math.PI/2 + theta);
break;
case 'z':
pos.z += delta;
break;
}
};
this.find_boxes_inside_rect = function(x,y,w,h, camera){
let selected_boxes_by_rect = [];
if (!this.boxes)
return selected_boxes_by_rect;
var p = new THREE.Vector3();
for (var i=0; i< this.boxes.length; i++){
let box_center = this.boxes[i].position;
let pw = this.world.lidarPosToScene(box_center);
p.set(pw.x, pw.y, pw.z);
p.project(camera);
p.x = p.x/p.z;
p.y = p.y/p.z;
//console.log(p);
if ((p.x > x) && (p.x < x+w) && (p.y>y) && (p.y<y+h)){
selected_boxes_by_rect.push(this.boxes[i]);
}
}
console.log("select boxes", selected_boxes_by_rect.length);
return selected_boxes_by_rect;
},
this.proc_annotation = function(boxes){
// boxes = this.transformBoxesByEgoPose(boxes);
// boxes = this.transformBoxesByOffset(boxes);
// //var boxes = JSON.parse(this.responseText);
//console.log(ret);
this.boxes = this.createBoxes(boxes); //create in future world
this.webglGroup = new THREE.Group();
this.webglGroup.name = "annotations";
this.boxes.forEach(b=>this.webglGroup.add(b));
this.world.webglGroup.add(this.webglGroup);
this.boxes_load_time = new Date().getTime();
console.log(this.boxes_load_time, this.frameInfo.scene, this.frameInfo.frame, "loaded boxes ", this.boxes_load_time - this.create_time, "ms");
this.sort_boxes();
this._afterPreload();
};
this.load_annotation=function(on_load){
if (this.data.cfg.disableLabels){
on_load([]);
}else {
var xhr = new XMLHttpRequest();
// we defined the xhr
var _self = this;
xhr.onreadystatechange = function () {
if (this.readyState != 4) return;
if (this.status == 200) {
let ann = _self.frameInfo.anno_to_boxes(this.responseText);
on_load(ann);
}
// end of state change: it can be after some time (async)
};
xhr.open('GET', "/load_annotation"+"?scene="+this.frameInfo.scene+"&frame="+this.frameInfo.frame, true);
xhr.send();
}
};
this.reloadAnnotation=function(done){
this.load_annotation(ann=>{
this.reapplyAnnotation(ann, done);
});
};
this.reapplyAnnotation = function(boxes, done){
// these boxes haven't attached a world
//boxes = this.transformBoxesByOffset(boxes);
// mark all old boxes
this.boxes.forEach(b=>{b.delete=true;});
let pendingBoxList=[];
boxes.forEach(nb=>{ // nb is annotation format, not a true box
let old_box = this.boxes.find(function(x){
return x.obj_track_id == nb.obj_id && x.obj_track_id != "" && nb.obj_id != "" && x.obj_type == nb.obj_type;;
});
if (old_box){
// found
// update psr
delete old_box.delete; // unmark delete flag
old_box.position.set(nb.psr.position.x, nb.psr.position.y, nb.psr.position.z);
old_box.scale.set(nb.psr.scale.x, nb.psr.scale.y, nb.psr.scale.z);
old_box.rotation.set(nb.psr.rotation.x, nb.psr.rotation.y, nb.psr.rotation.z);
old_box.obj_attr = nb.obj_attr;
old_box.annotator = nb.annotator;
old_box.changed=false; // clear changed flag.
}else{
// not found
let box=this.createOneBoxByAnn(nb);
pendingBoxList.push(box);
}
});
// delete removed
let toBeDelBoxes = this.boxes.filter(b=>b.delete);
toBeDelBoxes.forEach(b=>{
if (b.boxEditor){
b.boxEditor.detach("donthide");
}
this.webglGroup.remove(b);
this.remove_box(b);
})
pendingBoxList.forEach(b=>{
this.boxes.push(b);
})
//todo, restore point color
//todo, update imagecontext, selected box, ...
//refer to normal delete operation
// re-color again
this.world.lidar.recolor_all_points();
this.color_boxes();
// add new boxes
pendingBoxList.forEach(b=>{
this.webglGroup.add(b);
})
this.resetModified();
if (done)
done();
}
this.createOneBoxByAnn = function(annotation){
let b = annotation;
let mesh = this.createCuboid(b.psr.position,
b.psr.scale,
b.psr.rotation,
b.obj_type,
b.obj_id,
b.obj_attr);
if (b.annotator){
mesh.annotator = b.annotator;
}
if (b.follows)
mesh.follows = b.follows;
return mesh;
};
this.createBoxes = function(annotations){
return annotations.map((b)=>{
return this.createOneBoxByAnn(b);
});
};
this.box_local_id = 0;
this.get_new_box_local_id=function(){
var ret = this.box_local_id;
this.box_local_id+=1;
return ret;
};
this.color_box = function(box)
{
if (this.data.cfg.color_obj == "category" || this.data.cfg.color_obj == "no")
{
let color = globalObjectCategory.get_color_by_category(box.obj_type);
box.material.color.r=color.x;
box.material.color.g=color.y;
box.material.color.b=color.z;
}
else
{
let color = globalObjectCategory.get_color_by_id(box.obj_track_id);
box.material.color.r=color.x;
box.material.color.g=color.y;
box.material.color.b=color.z;
}
}
this.color_boxes = function()
{
this.boxes.forEach(box=>{
this.color_box(box);
})
}
}
export{Annotation}

@ -0,0 +1,463 @@
import {transpose, matmul2, euler_angle_to_rotate_matrix_3by3,normalizeAngle } from "./util.js";
import { logger } from "./log.js";
// todo: this module needs a proper name
function AutoAdjust(boxOp, mouse, header){
this.boxOp = boxOp,
this.mouse = mouse;
this.header = header;
var marked_object = null;
// mark bbox, which will be used as reference-bbox of an object.
this.mark_bbox=function(box){
if (box){
this.marked_object = {
frame: box.world.frameInfo.frame,
scene: box.world.frameInfo.scene,
ann: box.world.annotation.boxToAnn(box),
}
logger.log(`selected reference objcet ${this.marked_object}`);
this.header.set_ref_obj(this.marked_object);
}
};
this.followStaticObjects = function(box) {
let world = box.world;
let staticObjects = world.annotation.boxes.
filter(b=>b!=box && b.obj_attr && b.obj_attr.search('static')>=0).
map(refObj=>{
let coord = euler_angle_to_rotate_matrix_3by3(refObj.rotation);
let trans = transpose(coord, 3);
let p = [box.position.x - refObj.position.x,
box.position.y - refObj.position.y,
box.position.z - refObj.position.z];
let relativePos = matmul2(trans, p, 3);
let relativeRot = {
x: normalizeAngle(box.rotation.x - refObj.rotation.x),
y: normalizeAngle(box.rotation.y - refObj.rotation.y),
z: normalizeAngle(box.rotation.z - refObj.rotation.z),
};
let distance = Math.sqrt(relativePos[0]*relativePos[0] + relativePos[1]*relativePos[1] + relativePos[2]*relativePos[2]);
return {
obj_track_id: refObj.obj_track_id,
relativePos,
relativeRot,
distance
}
});
let worldList = box.world.data.worldList;
//let saveList = [];
worldList.forEach(w=>{
if (w === box.world){
//current frame
return;
}
let existedBox = w.annotation.boxes.find(b=>b.obj_track_id == box.obj_track_id);
if (existedBox && !existedBox.annotator)
{
// have same objects annotated.
// if its generated by machine, lets overwrite it
return;
}
let candPoseSets = staticObjects.map(refObj=>{
let refObjInW = w.annotation.boxes.find(b=>b.obj_track_id == refObj.obj_track_id);
if (!refObjInW){
// not found refobj in this world, give up
return null;
}
let relativePos = refObj.relativePos;
let relativeRot = refObj.relativeRot;
let coord = euler_angle_to_rotate_matrix_3by3(refObjInW.rotation);
let rp = matmul2(coord, relativePos, 3);
let newObjPos = {
x: refObjInW.position.x + rp[0],
y: refObjInW.position.y + rp[1],
z: refObjInW.position.z + rp[2],
};
let newObjRot = {
x: normalizeAngle(refObjInW.rotation.x + relativeRot.x),
y: normalizeAngle(refObjInW.rotation.y + relativeRot.y),
z: normalizeAngle(refObjInW.rotation.z + relativeRot.z)
};
return {
distance: refObj.distance,
weight: Math.exp(-refObj.distance * (refObjInW.annotator?1:0.1)),
position: newObjPos,
rotation: newObjRot,
};
});
candPoseSets = candPoseSets.filter(p=>!!p);
if (candPoseSets.length == 0) {
return;
}
// calculate mean pos/rot
let denorm = candPoseSets.reduce((a,b)=>a+b.weight, 0);
let newObjPos = {x:0, y:0, z:0};
let newObjRot = {x:0, y:0, z:0, cosZ: 0, sinZ:0};
candPoseSets.forEach(p=>{
newObjPos.x += p.position.x * p.weight;
newObjPos.y += p.position.y * p.weight;
newObjPos.z += p.position.z * p.weight;
newObjRot.x += p.rotation.x * p.weight;
newObjRot.y += p.rotation.y * p.weight;
//newObjRot.z += p.rotation.z * p.weight;
newObjRot.cosZ += Math.cos(p.rotation.z) * p.weight;
newObjRot.sinZ += Math.sin(p.rotation.z) * p.weight;
});
newObjPos.x /= denorm;
newObjPos.y /= denorm;
newObjPos.z /= denorm;
newObjRot.x /= denorm;
newObjRot.y /= denorm;
newObjRot.cosZ /= denorm;
newObjRot.sinZ /= denorm;
newObjRot.z = Math.atan2(newObjRot.sinZ, newObjRot.cosZ);
// ignor distant objects
if (pointsGlobalConfig.ignoreDistantObject){
let objDistance = Math.sqrt(newObjPos.x * newObjPos.x + newObjPos.y * newObjPos.y + newObjPos.z * newObjPos.z);
if ((box.scale.z < 2 && objDistance > 100) || objDistance > 150)
{
return;
}
}
// apply
if (existedBox){
existedBox.position.x = newObjPos.x;
existedBox.position.y = newObjPos.y;
existedBox.position.z = newObjPos.z;
existedBox.rotation.x = newObjRot.x;
existedBox.rotation.y = newObjRot.y;
existedBox.rotation.z = newObjRot.z;
existedBox.scale.x = box.scale.x;
existedBox.scale.y = box.scale.y;
existedBox.scale.z = box.scale.z;
existedBox.annotator="S";
logger.log(`modified box in ${w}`);
} else{
let newBox = w.annotation.add_box(newObjPos,
box.scale,
newObjRot,
box.obj_type,
box.obj_track_id,
box.obj_attr);
newBox.annotator="S";
w.annotation.load_box(newBox);
logger.log(`inserted box in ${w}`);
}
console.log("added box in ", w.frameInfo.frame);
//saveList.push(w);
w.annotation.setModified();
});
};
this.followsRef = function(box){
//find ref object in current frame
let world = box.world;
let refObj = world.annotation.boxes.find(b=>b.obj_track_id == this.marked_object.ann.obj_id);
if (refObj){
console.log("found ref obj in current frame");
world.annotation.setModified()
//compute relative position
// represent obj in coordinate system of refobj
let coord = euler_angle_to_rotate_matrix_3by3(refObj.rotation);
let trans = transpose(coord, 3);
let p = [box.position.x - refObj.position.x,
box.position.y - refObj.position.y,
box.position.z - refObj.position.z];
const relativePos = matmul2(trans, p, 3);
const relativeRot = {
x: box.rotation.x - refObj.rotation.x,
y: box.rotation.y - refObj.rotation.y,
z: box.rotation.z - refObj.rotation.z,
};
let worldList = box.world.data.worldList;
//let saveList = [];
worldList.forEach(w=>{
if (w === box.world){
//current frame
return;
}
let existedBox = w.annotation.boxes.find(b=>b.obj_track_id == box.obj_track_id);
if (existedBox && !existedBox.annotator)
{
// have same objects annotated.
// if its generated by machine, lets overwrite it
return;
}
let refObjInW = w.annotation.boxes.find(b=>b.obj_track_id == refObj.obj_track_id);
if (!refObjInW){
// not found refobj in this world, give up
return;
}
let coord = euler_angle_to_rotate_matrix_3by3(refObjInW.rotation);
let rp = matmul2(coord, relativePos, 3);
let newObjPos = {
x: refObjInW.position.x + rp[0],
y: refObjInW.position.y + rp[1],
z: refObjInW.position.z + rp[2],
};
let newObjRot = {
x: refObjInW.rotation.x + relativeRot.x,
y: refObjInW.rotation.y + relativeRot.y,
z: refObjInW.rotation.z + relativeRot.z
};
if (existedBox){
existedBox.position.x = newObjPos.x;
existedBox.position.y = newObjPos.y;
existedBox.position.z = newObjPos.z;
existedBox.rotation.x = newObjRot.x;
existedBox.rotation.y = newObjRot.y;
existedBox.rotation.z = newObjRot.z;
existedBox.scale.x = box.scale.x;
existedBox.scale.y = box.scale.y;
existedBox.scale.z = box.scale.z;
existedBox.annotator="F";
existedBox.follows = {
obj_track_id: refObj.obj_track_id,
relative_position: {
x: relativePos[0],
y: relativePos[1],
z: relativePos[2],
},
relative_rotation: relativeRot,
};
logger.log(`modified box in ${w}`);
} else{
let newBox = w.annotation.add_box(newObjPos,
box.scale,
newObjRot,
box.obj_type,
box.obj_track_id,
box.obj_attr);
newBox.annotator="F";
newBox.follows = {
obj_track_id: refObj.obj_track_id,
relative_position: {
x: relativePos[0],
y: relativePos[1],
z: relativePos[2],
},
relative_rotation: relativeRot,
};
w.annotation.load_box(newBox);
logger.log(`inserted box in ${w}`);
}
console.log("added box in ", w.frameInfo.frame);
//saveList.push(w);
w.annotation.setModified();
});
//saveWorldList(saveList);
}
};
this.syncFollowers = function(box){
let world = box.world;
let allFollowers = world.annotation.boxes.filter(b=>b.follows && b.follows.obj_track_id === box.obj_track_id);
if (allFollowers.length == 0){
console.log("no followers");
return;
}
let refObj = box;
let coord = euler_angle_to_rotate_matrix_3by3(refObj.rotation);
allFollowers.forEach(fb=>{
let relpos = [fb.follows.relative_position.x,
fb.follows.relative_position.y,
fb.follows.relative_position.z,
];
let rp = matmul2(coord, relpos, 3);
fb.position.x = refObj.position.x + rp[0];
fb.position.y = refObj.position.y + rp[1];
fb.position.z = refObj.position.z + rp[2];
fb.rotation.x = refObj.rotation.x + fb.follows.relative_rotation.x;
fb.rotation.y = refObj.rotation.y + fb.follows.relative_rotation.y;
fb.rotation.z = refObj.rotation.z + fb.follows.relative_rotation.z;
});
};
this.paste_bbox=function(pos, add_box){
if (!pos)
pos = this.marked_object.ann.psr.position;
else
pos.z = this.marked_object.ann.psr.position.z;
return add_box(pos, this.marked_object.ann.psr.scale, this.marked_object.ann.psr.rotation,
this.marked_object.ann.obj_type, this.marked_object.ann.obj_id, this.marked_object.ann.obj_attr);
};
// this.auto_adjust_bbox=function(box, done, on_box_changed){
// saveWorld(function(){
// do_adjust(box, on_box_changed);
// });
// let _self =this;
// function do_adjust(box, on_box_changed){
// console.log("auto adjust highlighted bbox");
// var xhr = new XMLHttpRequest();
// // we defined the xhr
// xhr.onreadystatechange = function () {
// if (this.readyState != 4) return;
// if (this.status == 200) {
// console.log(this.responseText)
// console.log(box.position);
// console.log(box.rotation);
// var trans_mat = JSON.parse(this.responseText);
// var rotation = Math.atan2(trans_mat[4], trans_mat[0]) + box.rotation.z;
// var transform = {
// x: -trans_mat[3],
// y: -trans_mat[7],
// z: -trans_mat[11],
// }
// /*
// cos sin x
// -sin cos y
// */
// var new_pos = {
// x: Math.cos(-rotation) * transform.x + Math.sin(-rotation) * transform.y,
// y: -Math.sin(-rotation) * transform.x + Math.cos(-rotation) * transform.y,
// z: transform.z,
// };
// box.position.x += new_pos.x;
// box.position.y += new_pos.y;
// box.position.z += new_pos.z;
// box.scale.x = marked_object.scale.x;
// box.scale.y = marked_object.scale.y;
// box.scale.z = marked_object.scale.z;
// box.rotation.z -= Math.atan2(trans_mat[4], trans_mat[0]);
// console.log(box.position);
// console.log(box.rotation);
// on_box_changed(box);
// _self.header.mark_changed_flag();
// if (done){
// done();
// }
// }
// // end of state change: it can be after some time (async)
// };
// xhr.open('GET',
// "/auto_adjust"+"?scene="+marked_object.scene + "&"+
// "ref_frame=" + marked_object.frame + "&" +
// "object_id=" + marked_object.obj_track_id + "&" +
// "adj_frame=" + data.world.frameInfo.frame,
// true);
// xhr.send();
// }
// };
this.smart_paste=function(selected_box, add_box, on_box_changed){
var box = selected_box;
if (!box){
let sceneP = this.mouse.get_mouse_location_in_world()
// trans pos to world local pos
//let pos = this.data.world.scenePosToLidar(sceneP);
box = this.paste_bbox(pos, add_box);
}
else if (this.marked_object){
box.scale.x = this.marked_object.ann.psr.scale.x;
box.scale.y = this.marked_object.ann.psr.scale.y;
box.scale.z = this.marked_object.ann.psr.scale.z;
}
// this.auto_adjust_bbox(box,
// function(){saveWorld();},
// on_box_changed);
// this.header.mark_changed_flag();
this.boxOp.auto_rotate_xyz(box, null, null,
on_box_changed,
"noscaling");
};
}
export {AutoAdjust}

@ -0,0 +1,30 @@
import { globalObjectCategory } from "./obj_cfg.js";
function autoAnnotate(world, done, alg){
var xhr = new XMLHttpRequest();
// we defined the xhr
xhr.onreadystatechange = function () {
if (this.readyState != 4) return;
if (this.status == 200) {
let anns = JSON.parse(this.responseText);
anns.map(a=>a.obj_type = globalObjectCategory.guess_obj_type_by_dimension(a.psr.scale));
// load annotations
world.annotation.reapplyAnnotation(anns);
if (done)
done();
}
};
xhr.open('GET', "/auto_annotate?"+"scene="+world.frameInfo.scene+"&frame="+world.frameInfo.frame, true);
xhr.send();
}
export {autoAnnotate}

@ -0,0 +1,403 @@
import * as THREE from './lib/three.module.js';
import { PCDLoader } from './lib/PCDLoader.js';
import { matmul, euler_angle_to_rotate_matrix_3by3} from "./util.js"
//todo: clean arrows
function AuxLidar(sceneMeta, world, frameInfo, auxLidarName){
this.world = world;
this.frameInfo = frameInfo;
this.name = auxLidarName;
this.sceneMeta = sceneMeta;
this.coordinatesOffset = world.coordinatesOffset;
this.showPointsOnly = true;
this.showCalibBox = false;
//this.cssStyleSelector = this.sceneMeta.calib.aux_lidar[this.name].cssstyleselector;
this.color = this.sceneMeta.calib.aux_lidar[this.name].color;
if (!this.color)
{
this.color = [
this.world.data.cfg.point_brightness,
this.world.data.cfg.point_brightness,
this.world.data.cfg.point_brightness,
];
}
this.lidar_points = null; // read from file, centered at 0
this.elements = null; // geometry points
this.preloaded = false;
this.loaded = false;
this.go_cmd_received = false;
this.webglScene = null;
this.on_go_finished = null;
this.go = function(webglScene, on_go_finished){
this.webglScene = webglScene;
if (this.preloaded){
if (this.elements){
this.webglScene.add(this.elements.points);
if (this.showCalibBox)
this.webglScene.add(this.calib_box);
}
this.loaded = true;
if (on_go_finished)
on_go_finished();
}
//anyway we save go cmd
{
this.go_cmd_received = true;
this.on_go_finished = on_go_finished;
}
};
this.showCalibBox = function(){
this.showCalibBox = true;
this.webglScene.add(this.calib_box);
};
this.hideCalibBox = function(){
this.showCalibBox = false;
this.webglScene.remove(this.calib_box);
};
this.get_unoffset_lidar_points = function(){
if (this.elements){
let pts = this.elements.points.geometry.getAttribute("position").array;
return pts.map((p,i)=>p-this.world.coordinatesOffset[i %3]);
}
else{
return [];
}
};
// todo: what if it's not preloaded yet
this.unload = function(keep_box){
if (this.elements){
this.webglScene.remove(this.elements.points);
if (!this.showPointsOnly)
this.elements.arrows.forEach(a=>this.webglScene.remove(a));
if (!keep_box)
this.webglScene.remove(this.calib_box);
}
this.loaded = false;
};
// todo: its possible to remove points before preloading,
this.deleteAll = function(keep_box){
if (this.loaded){
this.unload();
}
if (this.elements){
//this.scene.remove(this.points);
this.world.data.dbg.free();
if (this.elements.points)
{
this.elements.points.geometry.dispose();
this.elements.points.material.dispose();
}
if (this.elements.arrows)
{
this.elements.arrows.forEach(a=>{
this.world.data.dbg.free();
a.geometry.dispose();
a.material.dispose();
})
}
this.elements = null;
}
if (!keep_box && this.calib_box){
this.world.data.dbg.free();
this.calib_box.geometry.dispose();
this.calib_box.material.dispose();
this.calib_box = null;
}
};
this.filterPoints = function(position){
let filtered_position = [];
if (pointsGlobalConfig.enableFilterPoints)
{
for(let i = 0; i <= position.length; i+=3)
{
if (position[i+2] <= pointsGlobalConfig.filterPointsZ)
{
filtered_position.push(position[i]);
filtered_position.push(position[i+1]);
filtered_position.push(position[i+2]);
}
}
}
return filtered_position;
};
this.preload = function(on_preload_finished){
this.on_preload_finished = on_preload_finished;
var loader = new PCDLoader();
var _self = this;
loader.load( this.frameInfo.get_aux_lidar_path(this.name),
//ok
function ( pcd ) {
var position = pcd.position;
//_self.points_parse_time = new Date().getTime();
//console.log(_self.points_load_time, _self.frameInfo.scene, _self.frameInfo.frame, "parse pionts ", _self.points_parse_time - _self.create_time, "ms");
_self.lidar_points = position;
// add one box to calibrate lidar with lidar
_self.calib_box = _self.createCalibBox();
// install callback for box changing
_self.calib_box.on_box_changed = ()=>{
_self.move_lidar(_self.calib_box);
};
//position = _self.transformPointsByOffset(position);
position = _self.move_points(_self.calib_box);
let elements = _self.buildGeometry(position);
_self.elements = elements;
//_self.points_backup = mesh;
_self._afterPreload();
},
// on progress,
function(){},
// on error
function(){
//error
console.log("load lidar failed.");
_self._afterPreload();
},
// on file loaded
function(){
//_self.points_readfile_time = new Date().getTime();
//console.log(_self.points_load_time, _self.frameInfo.scene, _self.frameInfo.frame, "read file ", _self.points_readfile_time - _self.create_time, "ms");
}
);
};
// internal funcs below
this._afterPreload = function(){
this.preloaded = true;
console.log(`lidar ${this.auxLidarName} preloaded`);
if (this.on_preload_finished){
this.on_preload_finished();
}
if (this.go_cmd_received){
this.go(this.webglScene, this.on_go_finished);
}
};
this.createCalibBox = function(){
if (this.sceneMeta.calib.aux_lidar && this.sceneMeta.calib.aux_lidar[this.name]){
return this.world.annotation.createCuboid(
{
x: this.sceneMeta.calib.aux_lidar[this.name].translation[0] + this.coordinatesOffset[0],
y: this.sceneMeta.calib.aux_lidar[this.name].translation[1] + this.coordinatesOffset[1],
z: this.sceneMeta.calib.aux_lidar[this.name].translation[2] + this.coordinatesOffset[2],
},
{x:0.5, y:0.5, z:0.5},
{
x: this.sceneMeta.calib.aux_lidar[this.name].rotation[0],
y: this.sceneMeta.calib.aux_lidar[this.name].rotation[1],
z: this.sceneMeta.calib.aux_lidar[this.name].rotation[2],
},
"lidar",
this.name);
}else {
return this.world.annotation.createCuboid(
{x: this.coordinatesOffset[0],
y: this.coordinatesOffset[1],
z: this.coordinatesOffset[2]},
{x:0.5, y:0.5, z:0.5},
{x:0,y:0,z:0},
"lidar",
this.name);
}
};
this.buildPoints = function(position){
// build geometry
this.world.data.dbg.alloc();
let geometry = new THREE.BufferGeometry();
if ( position.length > 0 )
geometry.addAttribute( 'position', new THREE.Float32BufferAttribute( position, 3 ) );
let pointColor = this.color;
let color=[];
for (var i =0; i< position.length; i+=3){
color.push(pointColor[0]);
color.push(pointColor[1]);
color.push(pointColor[2]);
}
geometry.addAttribute( 'color', new THREE.Float32BufferAttribute(color, 3 ) );
geometry.computeBoundingSphere();
// build material
let pointSize = this.sceneMeta.calib.aux_lidar[this.name].point_size;
if (!pointSize)
pointSize = 1;
let material = new THREE.PointsMaterial( { size: pointSize, vertexColors: THREE.VertexColors } );
//material.size = 2;
material.sizeAttenuation = false;
// build mesh
let mesh = new THREE.Points( geometry, material );
mesh.name = "lidar";
return mesh;
};
this.buildGeometry = function(position){
let points = this.buildPoints(position);
return {
points: points,
};
};
this.move_points = function(box){
let points = this.lidar_points;
let trans = euler_angle_to_rotate_matrix_3by3(box.rotation);
let rotated_points = matmul(trans, points, 3);
let translation=[box.position.x, box.position.y, box.position.z];
let translated_points = rotated_points.map((p,i)=>{
return p + translation[i % 3];
});
let filtered_position = this.filterPoints(translated_points);
return filtered_position;
};
this.move_lidar= function(box){
let translated_points = this.move_points(box);
let elements = this.buildGeometry(translated_points);
// remove old points
this.unload(true);
this.deleteAll(true);
this.elements = elements;
//_self.points_backup = mesh;
if (this.go_cmd_received) // this should be always true
{
this.webglScene.add(this.elements.points);
if (!this.showPointsOnly)
this.elements.arrows.forEach(a=>this.webglScene.add(a));
}
};
}
function AuxLidarManager(sceneMeta, world, frameInfo){
this.lidarList = [];
if (world.data.cfg.enableAuxLidar && sceneMeta.aux_lidar){
let lidars = [];
for (let r in sceneMeta.calib.aux_lidar){
if (!sceneMeta.calib.aux_lidar[r].disable)
lidars.push(r);
}
this.lidarList = lidars.map(name=>{
return new AuxLidar(sceneMeta, world, frameInfo, name);
});
}
this.getAllBoxes = function()
{
if (this.showCalibBox)
{
return this.lidarList.map(r=>r.calib_box);
}
else
{
return [];
}
};
this.preloaded = function(){
for (let r in this.lidarList){
if (!this.lidarList[r].preloaded)
return false;
}
return true;
};
this.go = function(webglScene, on_go_finished){
this.lidarList.forEach(r=>r.go(webglScene, on_go_finished));
};
this.preload = function(on_preload_finished){
this.lidarList.forEach(r=>r.preload(on_preload_finished));
};
this.unload = function(){
this.lidarList.forEach(r=>r.unload());
};
this.deleteAll = function(){
this.lidarList.forEach(r=>r.deleteAll());
};
this.getOperableObjects = function(){
return this.lidarList.flatMap(r=>r.getOperableObjects());
};
this.showCalibBox = false;
this.showCalibBox = function(){
this.showCalibBox = true;
this.lidarList.forEach(r=>r.showCalibBox());
};
this.hideCalibBox = function(){
this.showCalibBox = false;
this.lidarList.forEach(r=>r.hideCalibBox());
}
};
export {AuxLidarManager}

File diff suppressed because it is too large Load Diff

@ -0,0 +1,844 @@
import * as THREE from './lib/three.module.js';
import {logger} from "./log.js"
import {
Quaternion,
Vector3
} from "./lib/three.module.js";
import{ml} from "./ml.js";
import {dotproduct, transpose, matmul, euler_angle_to_rotate_matrix_3by3} from "./util.js"
function BoxOp(){
console.log("BoxOp called");
this.grow_box_distance_threshold = 0.3;
this.init_scale_ratio = {x:2, y:2, z:3};
this.fit_bottom = function(box)
{
let bottom = box.world.lidar.findBottom(box, {x:2, y:2, z:3});
this.translate_box(box, 'z', bottom + box.scale.z/2);
}
this.fit_top = function(box)
{
let top = box.world.lidar.findTop(box, {x:1.2, y:1.2, z:2});
this.translate_box(box, 'z', top - box.scale.z/2);
}
this.fit_left = function(box)
{
var extreme = box.world.lidar.grow_box(box, this.grow_box_distance_threshold, this.init_scale_ratio);
if (extreme){
this.translate_box(box, 'y', extreme.max.y - box.scale.y/2);
}
}
this.fit_right = function(box)
{
var extreme = box.world.lidar.grow_box(box, this.grow_box_distance_threshold, this.init_scale_ratio);
if (extreme){
this.translate_box(box, 'y', extreme.min.y + box.scale.y/2);
}
}
this.fit_front = function(box)
{
var extreme = box.world.lidar.grow_box(box, this.grow_box_distance_threshold, this.init_scale_ratio);
if (extreme){
this.translate_box(box, 'x', extreme.max.x - box.scale.x/2);
}
}
this.fit_rear = function(box)
{
var extreme = box.world.lidar.grow_box(box, this.grow_box_distance_threshold, this.init_scale_ratio);
if (extreme){
this.translate_box(box, 'x', extreme.min.x + box.scale.x/2);
}
}
this.fit_size = function(box,axies)
{
this.grow_box(box, this.grow_box_distance_threshold, {x:2, y:2, z:3}, axies);
}
this.justifyAutoAdjResult = function(orgBox, box)
{
let distance = Math.sqrt((box.position.x-orgBox.position.x)*(box.position.x-orgBox.position.x) +
(box.position.y-orgBox.position.y)*(box.position.y-orgBox.position.y) +
(box.position.z-orgBox.position.z)*(box.position.z-orgBox.position.z));
if (distance > Math.sqrt(box.scale.x*box.scale.x + box.scale.y*box.scale.y + box.scale.z*box.scale.z))
{
return false;
}
// if (Math.abs(box.rotation.z - orgBox.rotation.z) > Math.PI/4)
// {
// return false;
// }
if (box.scale.x > orgBox.scale.x*3 ||
box.scale.y > orgBox.scale.y*3 ||
box.scale.z > orgBox.scale.z*3)
{
return false;
}
return true;
}
this.auto_rotate_xyz= async function(box, callback, apply_mask, on_box_changed, noscaling, rotate_method){
let orgBox = box;
box = {
position: {x: box.position.x, y: box.position.y, z: box.position.z},
rotation: {x: box.rotation.x, y: box.rotation.y, z: box.rotation.z},
scale: {x: box.scale.x, y: box.scale.y, z: box.scale.z},
world: box.world,
};
// auto grow
// save scale
let grow = (box)=>{
let org_scale = {
x: box.scale.x,
y: box.scale.y,
z: box.scale.z,
};
this.grow_box(box, this.grow_box_distance_threshold, {x:2, y:2, z:3});
this.auto_shrink_box(box);
// now box has been centered.
let points_indices = box.world.lidar.get_points_of_box(box,1.0).index;
let extreme = box.world.lidar.get_dimension_of_points(points_indices, box);
// restore scale
if (noscaling){
box.scale.x = org_scale.x;
box.scale.y = org_scale.y;
box.scale.z = org_scale.z;
}
//
return extreme;
};
//points is N*3 shape
let applyRotation = (ret, extreme_after_grow)=>{
let angle = ret.angle;
if (!angle){
console.log("prediction not implemented?");
return;
}
//var points_indices = box.world.get_points_indices_of_box(box);
let points_indices = box.world.lidar.get_points_of_box(box,1.0).index;
var euler_delta = {
x: angle[0],
y: angle[1],
z: angle[2]
};
if (euler_delta.z > Math.PI){
euler_delta.z -= Math.PI*2;
};
/*
var composite_angel = linalg_std.euler_angle_composite(box.rotation, euler_delta);
console.log("orig ", box.rotation.x, box.rotation.y, box.rotation.z);
console.log("delt ", euler_delta.x, euler_delta.y, euler_delta.z);
console.log("comp ", composite_angel.x, composite_angel.y, composite_angel.z);
box.rotation.x = composite_angel.x;
box.rotation.y = composite_angel.y;
box.rotation.z = composite_angel.z;
*/
if (apply_mask){
if (apply_mask.x)
box.rotation.x = euler_delta.x;
if (apply_mask.y)
box.rotation.y = euler_delta.y;
if (apply_mask.z)
box.rotation.z = euler_delta.z;
}
else{
box.rotation.x = euler_delta.x;
box.rotation.y = euler_delta.y;
box.rotation.z = euler_delta.z;
}
// rotation set, now rescaling the box
// important: should use original points before rotation set
var extreme = box.world.lidar.get_dimension_of_points(points_indices, box);
let auto_adj_dimension = [];
if (apply_mask){
if (apply_mask.x || apply_mask.y)
auto_adj_dimension.push('z');
if (apply_mask.x || apply_mask.z)
auto_adj_dimension.push('y');
if (apply_mask.y || apply_mask.z)
auto_adj_dimension.push('x');
}
else{
auto_adj_dimension = ['x','y','z'];
}
if (!noscaling){
auto_adj_dimension.forEach((axis)=>{
this.translate_box(box, axis, (extreme.max[axis] + extreme.min[axis])/2);
box.scale[axis] = extreme.max[axis] - extreme.min[axis];
})
}else {
//anyway, we move the box in a way
let trans = euler_angle_to_rotate_matrix_3by3(box.rotation);
trans = transpose(trans, 3);
// compute the relative position of the origin point,that is, the lidar's position
// note the origin point is offseted, we need to restore first.
let boxpos = box.position;
let orgPoint = [
- boxpos.x,
- boxpos.y,
- boxpos.z,
];
let orgPointInBoxCoord = matmul(trans, orgPoint, 3);
let relativePosition = {
x: orgPointInBoxCoord[0],
y: orgPointInBoxCoord[1],
z: 1, //orgPointInBoxCoord[2],
}
if (extreme_after_grow)
extreme = extreme_after_grow;
auto_adj_dimension.forEach((axis)=>{
if (relativePosition[axis]>0){
//stick to max
this.translate_box(box, axis, extreme.max[axis] - box.scale[axis]/2);
}else{
//stick to min
this.translate_box(box, axis, extreme.min[axis] + box.scale[axis]/2);
}
})
}
return box;
};
let postProc = (box)=>{
if (this.justifyAutoAdjResult(orgBox, box))
{
// copy back
orgBox.position.x = box.position.x;
orgBox.position.y = box.position.y;
orgBox.position.z = box.position.z;
orgBox.rotation.x = box.rotation.x;
orgBox.rotation.y = box.rotation.y;
orgBox.rotation.z = box.rotation.z;
orgBox.scale.x = box.scale.x;
orgBox.scale.y = box.scale.y;
orgBox.scale.z = box.scale.z;
}
if (on_box_changed)
on_box_changed(orgBox);
if (callback){
callback();
}
return orgBox;
};
let extreme_after_grow = grow(box);
if (!rotate_method){
let points = box.world.lidar.get_points_relative_coordinates_of_box_wo_rotation(box, 1);
//let points = box.world.get_points_relative_coordinates_of_box(box, 1.0);
points = points.filter(function(p){
return p[2] > - box.scale.z/2 + 0.3;
})
let retBox = await ml.predict_rotation(points)
.then(applyRotation)
.then(postProc);
return retBox;
}
if (rotate_method == "moving-direction")
{
let estimatedRot = this.estimate_rotation_by_moving_direciton(box);
applyRotation({
angle:[
box.rotation.x, // use original rotation
box.rotation.y, // use original rotation
estimatedRot? estimatedRot.z : box.rotation.z, // use original rotation
]
},
extreme_after_grow);
postProc(box);
return box;
}
else{ //dont rotate, or null
applyRotation({
angle:[
box.rotation.x, // use original rotation
box.rotation.y, // use original rotation
box.rotation.z, // use original rotation
]
},
extreme_after_grow);
postProc(box);
return box;
}
}
this.auto_shrink_box= function(box){
var extreme = box.world.lidar.get_points_dimmension_of_box(box);
['x', 'y','z'].forEach((axis)=>{
this.translate_box(box, axis, (extreme.max[axis] + extreme.min[axis])/2);
box.scale[axis] = extreme.max[axis]-extreme.min[axis];
})
};
this.estimate_rotation_by_moving_direciton = function(box)
{
let prevWorld = box.world.data.findWorld(box.world.frameInfo.scene,
box.world.frameInfo.frame_index-1);
let nextWorld = box.world.data.findWorld(box.world.frameInfo.scene,
box.world.frameInfo.frame_index+1);
let prevBox = prevWorld?prevWorld.annotation.findBoxByTrackId(box.obj_track_id): null;
let nextBox = nextWorld?nextWorld.annotation.findBoxByTrackId(box.obj_track_id): null;
if (prevBox && nextBox)
{
if ((prevBox.annotator && nextBox.annotator) || (!prevBox.annotator && !nextBox.annotator))
{
// all annotated by machine or man, it's ok
}
else
{
// only one is manually annotated, use this one.
if (prevBox.annotator)
prevBox = null;
if (nextBox.annotator)
nextBox = null;
}
}
if (!nextBox && !prevBox){
logger.logcolor("red", "Cannot estimate direction: neither previous nor next frame/box loaded/annotated.")
return null;
}
let currentP = box.world.lidarPosToUtm(box.position);
let nextP = nextBox?nextBox.world.lidarPosToUtm(nextBox.position) : null;
let prevP = prevBox?prevBox.world.lidarPosToUtm(prevBox.position) : null;
if (!prevP)
prevP = currentP;
if (!nextP)
nextP = currentP;
let azimuth = Math.atan2(nextP.y-prevP.y, nextP.x-prevP.x)
let estimatedRot = box.world.utmRotToLidar(new THREE.Euler(0,0,azimuth, "XYZ"));
return estimatedRot;
};
this.grow_box= function(box, min_distance, init_scale_ratio, axies){
if (!axies)
{
axies = ['x','y','z'];
}
var extreme = box.world.lidar.grow_box(box, min_distance, init_scale_ratio);
if (extreme){
axies.forEach((axis)=>{
this.translate_box(box, axis, (extreme.max[axis] + extreme.min[axis])/2);
box.scale[axis] = extreme.max[axis] - extreme.min[axis];
})
}
};
this.change_rotation_y = function(box, theta, sticky, on_box_changed){
//box.rotation.x += theta;
//on_box_changed(box);
var points_indices = box.world.lidar.get_points_indices_of_box(box);
var _tempQuaternion = new Quaternion();
var rotationAxis = new Vector3(0, 1, 0);
// NOTE: the front/end subview is different from top/side view, that we look at the reverse direction of y-axis
// it's end view acturally.
// we could project front-view, but the translation (left, right) will be in reverse direction of top view.
/// that would be frustrating.
box.quaternion.multiply( _tempQuaternion.setFromAxisAngle( rotationAxis, -theta ) ).normalize();
if (sticky){
var extreme = box.world.lidar.get_dimension_of_points(points_indices, box);
['x','z'].forEach((axis)=>{
this.translate_box(box, axis, (extreme.max[axis] + extreme.min[axis])/2);
box.scale[axis] = extreme.max[axis] - extreme.min[axis];
})
}
if (on_box_changed)
on_box_changed(box);
}
this.auto_rotate_y=function(box, on_box_changed){
let points = box.world.lidar.get_points_of_box(box, 2.0);
// 1. find surounding points
var side_indices = []
var side_points = []
points.position.forEach(function(p, i){
if ((p[0] > box.scale.x/2 || p[0] < -box.scale.x/2) && (p[1] < box.scale.y/2 && p[1] > -box.scale.y/2)){
side_indices.push(points.index[i]);
side_points.push(points.position[i]);
}
})
var end_indices = []
var end_points = []
points.position.forEach(function(p, i){
if ((p[0] < box.scale.x/2 && p[0] > -box.scale.x/2) && (p[1] > box.scale.y/2 || p[1] < -box.scale.y/2)){
end_indices.push(points.index[i]);
end_points.push(points.position[i]);
}
})
// 2. grid by 0.3 by 0.3
// compute slope (derivative)
// for side part (pitch/tilt), use y,z axis
// for end part (row), use x, z axis
// box.world.lidar.set_spec_points_color(side_indices, {x:1,y:0,z:0});
// box.world.lidar.set_spec_points_color(end_indices, {x:0,y:0,z:1});
// box.world.lidar.update_points_color();
var x = end_points.map(function(x){return x[0]});
//var y = side_points.map(function(x){return x[1]});
var z = end_points.map(function(x){return x[2]});
var z_mean = z.reduce(function(x,y){return x+y;}, 0)/z.length;
var z = z.map(function(x){return x-z_mean;});
var theta = Math.atan2(dotproduct(x,z), dotproduct(x,x));
console.log(theta);
this.change_rotation_y(box, theta, false, on_box_changed);
}
this.change_rotation_x=function(box, theta, sticky, on_box_changed){
var points_indices = box.world.lidar.get_points_indices_of_box(box);
//box.rotation.x += theta;
//on_box_changed(box);
var _tempQuaternion = new Quaternion();
var rotationAxis = new Vector3(1,0,0);
box.quaternion.multiply( _tempQuaternion.setFromAxisAngle( rotationAxis, theta ) ).normalize();
if (sticky){
var extreme = box.world.lidar.get_dimension_of_points(points_indices, box);
['y','z'].forEach((axis)=>{
this.translate_box(box, axis, (extreme.max[axis] + extreme.min[axis])/2);
box.scale[axis] = extreme.max[axis] - extreme.min[axis];
})
}
if (on_box_changed)
on_box_changed(box);
};
this.auto_rotate_x=function(box, on_box_changed){
console.log("x auto ratote");
let points = box.world.lidar.get_points_of_box(box, 2.0);
// 1. find surounding points
var side_indices = []
var side_points = []
points.position.forEach(function(p, i){
if ((p[0] > box.scale.x/2 || p[0] < -box.scale.x/2) && (p[1] < box.scale.y/2 && p[1] > -box.scale.y/2)){
side_indices.push(points.index[i]);
side_points.push(points.position[i]);
}
})
var end_indices = []
var end_points = []
points.position.forEach(function(p, i){
if ((p[0] < box.scale.x/2 && p[0] > -box.scale.x/2) && (p[1] > box.scale.y/2 || p[1] < -box.scale.y/2)){
end_indices.push(points.index[i]);
end_points.push(points.position[i]);
}
})
// 2. grid by 0.3 by 0.3
// compute slope (derivative)
// for side part (pitch/tilt), use y,z axis
// for end part (row), use x, z axis
// box.world.lidar.set_spec_points_color(side_indices, {x:1,y:0,z:0});
// box.world.lidar.set_spec_points_color(end_indices, {x:0,y:0,z:1});
// box.world.lidar.update_points_color();
//render();
var x = side_points.map(function(x){return x[0]});
var y = side_points.map(function(x){return x[1]});
var z = side_points.map(function(x){return x[2]});
var z_mean = z.reduce(function(x,y){return x+y;}, 0)/z.length;
var z = z.map(function(x){return x-z_mean;});
var theta = Math.atan2(dotproduct(y,z), dotproduct(y,y));
console.log(theta);
this.change_rotation_x(box, theta, false, on_box_changed);
};
this.translate_box=function(box, axis, delta){
let t = {x:0, y:0, z:0};
t[axis] = delta;
// switch (axis){
// case 'x':
// box.position.x += delta*Math.cos(box.rotation.z);
// box.position.y += delta*Math.sin(box.rotation.z);
// break;
// case 'y':
// box.position.x += delta*Math.cos(Math.PI/2 + box.rotation.z);
// box.position.y += delta*Math.sin(Math.PI/2 + box.rotation.z);
// break;
// case 'z':
// box.position.z += delta;
// break;
// }
let trans = this.translateBoxInBoxCoord(box.rotation, t);
box.position.x += trans.x;
box.position.y += trans.y;
box.position.z += trans.z;
};
this.translateBoxInBoxCoord = function(rotation, t)
{
// euler
let euler = new THREE.Euler(rotation.x, rotation.y, rotation.z, "XYZ")
let trans = new THREE.Vector3(t.x, t.y, t.z).applyEuler(euler);
return trans;
};
this.rotate_z=function(box, theta, sticky){
// points indices shall be obtained before rotation.
var points_indices = box.world.lidar.get_points_indices_of_box(box);
var _tempQuaternion = new Quaternion();
var rotationAxis = new Vector3(0,0,1);
box.quaternion.multiply( _tempQuaternion.setFromAxisAngle( rotationAxis, theta ) ).normalize();
if (sticky){
var extreme = box.world.lidar.get_dimension_of_points(points_indices, box);
['x','y'].forEach((axis)=>{
this.translate_box(box, axis, (extreme.max[axis] + extreme.min[axis])/2);
box.scale[axis] = extreme.max[axis] - extreme.min[axis];
})
}
},
this.interpolate_selected_object= function(sceneName, objTrackId, currentFrame, done){
// var xhr = new XMLHttpRequest();
// // we defined the xhr
// xhr.onreadystatechange = function () {
// if (this.readyState != 4)
// return;
// if (this.status == 200) {
// var ret = JSON.parse(this.responseText);
// console.log(ret);
// if (done)
// done(sceneName, ret);
// }
// };
// xhr.open('GET', "/interpolate?scene="+sceneName+"&frame="+currentFrame+"&obj_id="+objTrackId, true);
// xhr.send();
};
this.highlightBox = function(box){
if (box){
box.material.color.r=1;
box.material.color.g=0;
box.material.color.b=1;
box.material.opacity=1;
}
};
this.unhighlightBox = function(box){
if (box){
// box.material.color = new THREE.Color(parseInt("0x"+get_obj_cfg_by_type(box.obj_type).color.slice(1)));
// box.material.opacity = box.world.data.cfg.box_opacity;
box.world.annotation.color_box(box);
}
}
this.interpolateAsync = async function(worldList, boxList, applyIndList){
// if annotator is not null, it's annotated by us algorithms
let anns = boxList.map(b=> (!b || b.annotator)? null : b.world.annotation.ann_to_vector_global(b));
console.log(anns);
let ret = await ml.interpolate_annotation(anns);
console.log(ret);
let refObj = boxList.find(b=>!!b);
let obj_type = refObj.obj_type;
let obj_track_id = refObj.obj_track_id;
let obj_attr = refObj.obj_attr;
for (let i = 0; i< boxList.length; i++){
if (!applyIndList[i])
{
continue;
}
//
let world = worldList[i];
let ann = world.annotation.vector_global_to_ann(ret[i]);
// don't roate x/y
if (!pointsGlobalConfig.enableAutoRotateXY)
{
ann.rotation.x = 0;
ann.rotation.y = 0;
}
// if (world.lidar.get_box_points_number(ann) == 0)
// {
// continue;
// }
if (!boxList[i]){
// create new box
let newBox = world.annotation.add_box(ann.position,
ann.scale,
ann.rotation,
obj_type,
obj_track_id,
obj_attr);
newBox.annotator="i";
world.annotation.load_box(newBox);
world.annotation.setModified();
} else if (boxList[i].annotator) {
// modify box attributes
let b = ann;
boxList[i].position.x = b.position.x;
boxList[i].position.y = b.position.y;
boxList[i].position.z = b.position.z;
boxList[i].scale.x = b.scale.x;
boxList[i].scale.y = b.scale.y;
boxList[i].scale.z = b.scale.z;
boxList[i].rotation.x = b.rotation.x;
boxList[i].rotation.y = b.rotation.y;
boxList[i].rotation.z = b.rotation.z;
boxList[i].annotator = "i";
boxList[i].world.annotation.setModified();
}
}
};
this.interpolateAndAutoAdjustAsync = async function(worldList, boxList, onFinishOneBoxCB, applyIndList, dontRotate){
// if annotator is not null, it's annotated by us algorithms
let anns = boxList.map((b,i)=> {
if (!b)
return null;
if (b.annotator)
return null;
return b.world.annotation.ann_to_vector_global(b);
});
console.log("anns to interpolate", anns);
let autoAdjAsync = async (index, newAnn)=>{
//let box = boxList[index];
let world = worldList[index];
let tempBox = world.annotation.vector_global_to_ann(newAnn);
tempBox.world = world;
// autoadj is timecomsuming
// jump this step
let rotateThis = dontRotate;
if (!applyIndList[index]){
rotateThis = "dontrotate";
}
let adjustedBox = await this.auto_rotate_xyz(tempBox, null, null, null, true, rotateThis);
return world.annotation.ann_to_vector_global(adjustedBox);
};
let refObj = boxList.find(b=>!!b);
let obj_type = refObj.obj_type;
let obj_track_id = refObj.obj_track_id;
let obj_attr = refObj.obj_attr;
let onFinishOneBox= (index)=>{
console.log(`auto insert ${index} ${worldList[index].frameInfo.frame}done`);
let i = index;
if (!applyIndList[i]){
return;
}
if (!boxList[i]){
// create new box
let world = worldList[i];
let ann = world.annotation.vector_global_to_ann(anns[i]);
let newBox = world.annotation.add_box(ann.position,
ann.scale,
ann.rotation,
obj_type,
obj_track_id,
obj_attr);
newBox.annotator="a";
world.annotation.load_box(newBox);
} else if (boxList[i].annotator) {
// modify box attributes
let b = boxList[i].world.annotation.vector_global_to_ann(anns[i]);
boxList[i].position.x = b.position.x;
boxList[i].position.y = b.position.y;
boxList[i].position.z = b.position.z;
boxList[i].scale.x = b.scale.x;
boxList[i].scale.y = b.scale.y;
boxList[i].scale.z = b.scale.z;
boxList[i].rotation.x = b.rotation.x;
boxList[i].rotation.y = b.rotation.y;
boxList[i].rotation.z = b.rotation.z;
boxList[i].annotator="a";
}
if (onFinishOneBoxCB)
onFinishOneBoxCB(i);
};
let ret = await ml.interpolate_annotation(anns, autoAdjAsync, onFinishOneBox);
console.log(ret);
// for (let i = 0; i< boxList.length; i++){
// onFinishOneBox(i);
// }
};
}
export {BoxOp}

@ -0,0 +1,196 @@
import {rotation_matrix_to_euler_angle,euler_angle_to_rotate_matrix, matmul, transpose} from "./util.js"
//import {render_2d_image, update_image_box_projection} from "./image.js"
function Calib(data, editor){
this.data = data;
this.editor = editor;
var euler_angle={x:0, y:0, y:0};
var translate = {x:0, y:0, z:0};
this.save_calibration = function(){
var scene_meta = data.meta[data.world.frameInfo.scene];
var active_camera_name = data.world.cameras.active_name;
var calib = scene_meta.calib.camera[active_camera_name]
var extrinsic = calib.extrinsic.map(function(x){return x*1.0;});
euler_angle = rotation_matrix_to_euler_angle(extrinsic);
translate = {
x: extrinsic[3]*1.0,
y: extrinsic[7]*1.0,
z: extrinsic[11]*1.0,
};
console.log(extrinsic, euler_angle, translate);
let matrix = euler_angle_to_rotate_matrix(euler_angle, translate)
console.log("restoreed matrix",matrix);
this.editor.infoBox.show("calib", JSON.stringify(matrix));
}
this.reset_calibration = function(){
// to be done
this.editor.imageContextManager.render_2d_image();
}
this.calib_box = null;
this.show_camera_pos = function(){
this.editor.viewManager.mainView.dumpPose();
};
// show a manipulating box
this.start_calibration = function(){
var scene_meta = this.data.meta[data.world.frameInfo.scene];
var active_camera_name = this.data.world.cameras.active_name;
var calib = scene_meta.calib.camera[active_camera_name]
var extrinsic = calib.extrinsic.map(function(x){return x*1.0;});
let viewMatrix = [0, -1, 0, 0, //row vector
0, 0, -1, 0,
1, 0, 0, 0,
0, 0, 0, 1];
function transpose_transmatrix(m){
//m=4*4
return [
m[0],m[4],m[8],m[3],
m[1],m[5],m[9],m[7],
m[2],m[6],m[10],m[11],
m[12],m[13],m[14],m[15],
];
}
var op_matrix = matmul (transpose_transmatrix(viewMatrix),
transpose_transmatrix(extrinsic), 4);
var euler_angle = rotation_matrix_to_euler_angle(op_matrix);
var translate = {
x: extrinsic[3]*1.0,
y: extrinsic[7]*1.0,
z: extrinsic[11]*1.0,
};
console.log(euler_angle, translate);
this.show_camera_pos();
if (!this.calib_box)
{
this.calib_box = this.data.world.annotation.createCuboid(
{
x: translate.x,// + this.data.world.coordinatesOffset[0],
y: translate.y,// + this.data.world.coordinatesOffset[1],
z: translate.z, // + this.data.world.coordinatesOffset[2]
},
{x:1,y:1, z:1},
{
x: euler_angle.x,
y: euler_angle.y,
z: euler_angle.z
},
"camera",
"camera"
);
this.data.world.scene.add(this.calib_box);
}
else{
console.log("calib box exists.");
this.calib_box.position.x = translate.x;// + this.data.world.coordinatesOffset[0];
this.calib_box.position.y = translate.y;// + this.data.world.coordinatesOffset[1];
this.calib_box.position.z = translate.z;// + this.data.world.coordinatesOffset[2];
this.calib_box.rotation.x = euler_angle.x;
this.calib_box.rotation.y = euler_angle.y;
this.calib_box.rotation.z = euler_angle.z;
}
console.log(this.calib_box);
this.editor.render();
this.calib_box.on_box_changed = ()=>{
console.log("calib box changed.");
let real_pos = {
x: this.calib_box.position.x,// - this.data.world.coordinatesOffset[0],
y: this.calib_box.position.y,// - this.data.world.coordinatesOffset[1],
z: this.calib_box.position.z,// - this.data.world.coordinatesOffset[2],
};
let extrinsic = euler_angle_to_rotate_matrix(this.calib_box.rotation, real_pos);
calib.extrinsic = transpose_transmatrix(matmul (viewMatrix, extrinsic, 4));
console.log("extrinsic", calib.extrinsic)
console.log("euler", euler_angle, "translate", translate);
this.editor.imageContextManager.render_2d_image();
}
};
function stop_calibration()
{
//tbd
};
/*
function calibrate(ax, value){
var scene_meta = data.meta[data.world.frameInfo.scene];
var active_camera_name = data.world.cameras.active_name;
var calib = scene_meta.calib.camera[active_camera_name]
var extrinsic = calib.extrinsic.map(function(x){return x*1.0;});
var euler_angle = rotation_matrix_to_euler_angle(extrinsic);
var translate = {
x: extrinsic[3]*1.0,
y: extrinsic[7]*1.0,
z: extrinsic[11]*1.0,
};
if (ax == 'z'){
euler_angle.z += value;
}else if (ax == 'x'){
euler_angle.x += value;
}
else if (ax == 'y'){
euler_angle.y += value;
}else if (ax == 'tz'){
translate.z += value;
}else if (ax == 'tx'){
translate.x += value;
}
else if (ax == 'ty'){
translate.y += value;
}
calib.extrinsic = euler_angle_to_rotate_matrix(euler_angle, translate);
console.log("extrinsic", calib.extrinsic)
console.log("euler", euler_angle, "translate", translate);
render_2d_image();
if (selected_box)
update_image_box_projection(selected_box);
}
*/
};
export {Calib}

@ -0,0 +1,121 @@
class Config{
//dataCfg = {
//disableLabels: true,
enablePreload = true;
color_points = "mono";
enableRadar = false;
enableAuxLidar = false;
enableDynamicGroundLevel = true;
coordinateSystem = 'utm';
point_size = 1;
point_brightness = 0.6;
box_opacity = 1;
show_background = true;
color_obj = "category";
theme = "dark";
enableFilterPoints = false;
filterPointsZ = 2.0;
batchModeInstNumber = 20;
batchModeSubviewSize = {width: 130, height: 450};
// edit on one box, apply to all selected boxes.
linkEditorsInBatchMode = false;
// only rotate z in 'auto/interpolate' algs
enableAutoRotateXY = false;
autoSave = true;
autoUpdateInterpolatedBoxes = true;
hideId = false;
hideCategory = false;
moveStep = 0.01; // ratio, percentage
rotateStep = Math.PI/360;
ignoreDistantObject = true;
///editorCfg
//disableSceneSelector = true;
//disableFrameSelector = true;
//disableCameraSelector = true;
//disableFastToolbox= true;
//disableMainView= true;
//disableMainImageContext = true;
//disableGrid = true;
//disableRangeCircle = true;
//disableAxis = true;
//disableMainViewKeyDown = true;
//projectRadarToImage = true;
//projectLidarToImage = true;
constructor()
{
}
readItem(name, defaultValue, castFunc){
let ret = window.localStorage.getItem(name);
if (ret)
{
if (castFunc)
return castFunc(ret);
else
return ret;
}
else
{
return defaultValue;
}
}
setItem(name, value)
{
this[name] = value;
if (typeof value == 'object')
value = JSON.stringify(value);
window.localStorage.setItem(name, value);
}
toBool(v)
{
return v==="true";
}
saveItems = [
["theme", null],
["enableRadar", this.toBool],
["enablePreload", this.toBool],
["enableAuxLidar", this.toBool],
["enableFilterPoints", this.toBool],
["filterPointsZ", parseFloat],
["color_points", null],
["coordinateSystem", null],
["batchModeInstNumber", parseInt],
["batchModeSubviewSize", JSON.parse],
["enableAutoRotateXY", this.toBool],
["autoUpdateInterpolatedBoxes", this.toBool],
];
load()
{
this.saveItems.forEach(item=>{
let key = item[0];
let castFunc = item[1];
this[key] = this.readItem(key, this[key], castFunc);
})
}
};
export {Config};

@ -0,0 +1,347 @@
import { globalKeyDownManager } from "./keydown_manager.js";
import {logger} from "./log.js";
class ConfigUi{
clickableItems = {
"#cfg-increase-size": (event)=>{
this.editor.data.scale_point_size(1.2);
this.editor.render();
this.editor.boxEditorManager.render();
return false;
},
"#cfg-decrease-size": (event)=>{
this.editor.data.scale_point_size(0.8);
this.editor.render();
this.editor.boxEditorManager.render();
return false;
},
"#cfg-increase-brightness": (event)=>{
this.editor.data.scale_point_brightness(1.2);
this.editor.render();
this.editor.boxEditorManager.render();
return false;
},
"#cfg-decrease-brightness": (event)=>{
this.editor.data.scale_point_brightness(0.8);
this.editor.render();
this.editor.boxEditorManager.render();
return false;
},
"#cfg-take-screenshot": (event)=>{
this.editor.downloadWebglScreenShot();
return true;
},
"#cfg-show-log": (event)=>{
logger.show();
return true;
},
"#cfg-start-calib":(event)=>{
this.editor.calib.start_calibration();
return true;
},
"#cfg-show-calib":(event)=>{
this.editor.calib.save_calibration();
return true;
},
// "#cfg-reset-calib":(event)=>{
// this.editor.calib.reset_calibration();
// return true;
// }
"#cfg-crop-scene": (event)=>{
this.editor.cropScene.show();
return true;
},
};
changeableItems = {
"#cfg-theme-select":(event)=>{
let theme = event.currentTarget.value;
//let scheme = document.documentElement.className;
document.documentElement.className = "theme-"+theme;
pointsGlobalConfig.setItem("theme", theme);
this.editor.viewManager.setColorScheme();
this.editor.render();
this.editor.boxEditorManager.render();
return false;
},
"#cfg-hide-box-checkbox":(event)=>{
let checked = event.currentTarget.checked;
//let scheme = document.documentElement.className;
if (checked)
this.editor.data.set_box_opacity(0);
else
this.editor.data.set_box_opacity(1);
this.editor.render();
this.editor.boxEditorManager.render();
return false;
},
"#cfg-hide-id-checkbox":(event)=>{
let checked = event.currentTarget.checked;
this.editor.floatLabelManager.show_id(!checked);
return false;
},
"#cfg-hide-category-checkbox":(event)=>{
let checked = event.currentTarget.checked;
this.editor.floatLabelManager.show_category(!checked);
return false;
},
"#cfg-hide-circle-ruler-checkbox": (event)=>{
let checked = event.currentTarget.checked;
this.editor.showRangeCircle(!checked);
return false;
},
"#cfg-auto-rotate-xy-checkbox": (event)=>{
let checked = event.currentTarget.checked;
pointsGlobalConfig.setItem("enableAutoRotateXY", checked);
return false;
},
'#cfg-auto-update-interpolated-boxes-checkbox': (event)=>{
let checked = event.currentTarget.checked;
pointsGlobalConfig.setItem("autoUpdateInterpolatedBoxes", checked);
return false;
},
"#cfg-color-points-select": (event)=>{
let value = event.currentTarget.value;
pointsGlobalConfig.setItem("color_points", value);
this.editor.data.worldList.forEach(w=>{
w.lidar.color_points();
w.lidar.update_points_color();
});
this.editor.render();
return false;
},
"#cfg-color-object-scheme":(event)=>{
let value = event.currentTarget.value;
this.editor.data.set_obj_color_scheme(value);
this.editor.render();
this.editor.imageContextManager.render_2d_image();
this.editor.floatLabelManager.set_color_scheme(value);
this.editor.render2dLabels(this.editor.data.world);
this.editor.boxEditorManager.render();
return false;
},
"#cfg-batch-mode-inst-number":(event)=>{
let batchSize = parseInt(event.currentTarget.value);
pointsGlobalConfig.setItem("batchModeInstNumber", batchSize);
this.editor.boxEditorManager.setBatchSize(batchSize);
return false;
},
"#cfg-coordinate-system-select": (event)=>{
let coord = event.currentTarget.value;
pointsGlobalConfig.setItem("coordinateSystem", coord);
this.editor.data.worldList.forEach(w=>{
w.calcTransformMatrix();
});
this.editor.render();
},
"#cfg-data-aux-lidar-checkbox": (event)=>{
let checked = event.currentTarget.checked;
pointsGlobalConfig.setItem("enableAuxLidar", checked);
return false;
},
"#cfg-data-radar-checkbox": (event)=>{
let checked = event.currentTarget.checked;
pointsGlobalConfig.setItem("enableRadar", checked);
return false;
},
"#cfg-data-filter-points-checkbox": (event)=>{
let checked = event.currentTarget.checked;
pointsGlobalConfig.setItem("enableFilterPoints", checked);
return false;
},
"#cfg-data-filter-points-z": (event)=>{
let z = event.currentTarget.value;
pointsGlobalConfig.setItem("filterPointsZ", z);
return false;
},
"#cfg-data-preload-checkbox": (event)=>{
let checked = event.currentTarget.checked;
pointsGlobalConfig.setItem("enablePreload", checked);
return false;
}
};
ignoreItems = [
"#cfg-point-size",
"#cfg-point-brightness",
"#cfg-theme",
"#cfg-color-object",
"#cfg-menu-batch-mode-inst-number",
"#cfg-hide-box",
"#cfg-calib-camera-LiDAR",
"#cfg-experimental",
"#cfg-data",
];
subMenus = [
"#cfg-experimental",
"#cfg-data",
];
constructor(button, wrapper, editor)
{
this.button = button;
this.wrapper = wrapper;
this.editor = editor;
this.editorCfg = editor.editorCfg;
this.dataCfg = editor.data.cfg;
this.menu = this.wrapper.querySelector("#config-menu");
this.wrapper.onclick = ()=>{
this.hide();
}
this.button.onclick = (event)=>{
this.show(event.currentTarget);
}
for (let item in this.clickableItems)
{
this.menu.querySelector(item).onclick = (event)=>{
let ret = this.clickableItems[item](event);
if (ret)
{
this.hide();
}
event.stopPropagation();
}
}
for (let item in this.changeableItems)
{
this.menu.querySelector(item).onchange = (event)=>{
let ret = this.changeableItems[item](event);
if (ret)
{
this.hide();
}
event.stopPropagation();
}
}
this.ignoreItems.forEach(item=>{
this.menu.querySelector(item).onclick = (event)=>{
{
event.stopPropagation();
}
}
});
this.subMenus.forEach(item=>{
this.menu.querySelector(item).onmouseenter = function(event){
if (this.timerId)
{
clearTimeout(this.timerId);
this.timerId = null;
}
event.currentTarget.querySelector(item +"-submenu").style.display="inherit";
}
this.menu.querySelector(item).onmouseleave = function(event){
let ui = event.currentTarget.querySelector(item +"-submenu");
this.timerId = setTimeout(()=>{
ui.style.display="none";
this.timerId = null;
},
200);
}
});
this.menu.onclick = (event)=>{
event.stopPropagation();
};
// init ui
this.menu.querySelector("#cfg-theme-select").value = pointsGlobalConfig.theme;
this.menu.querySelector("#cfg-data-aux-lidar-checkbox").checked = pointsGlobalConfig.enableAuxLidar;
this.menu.querySelector("#cfg-data-radar-checkbox").checked = pointsGlobalConfig.enableRadar;
this.menu.querySelector("#cfg-color-points-select").value = pointsGlobalConfig.color_points;
this.menu.querySelector("#cfg-coordinate-system-select").value = pointsGlobalConfig.coordinateSystem;
this.menu.querySelector("#cfg-batch-mode-inst-number").value = pointsGlobalConfig.batchModeInstNumber;
this.menu.querySelector("#cfg-data-filter-points-checkbox").checked = pointsGlobalConfig.enableFilterPoints;
this.menu.querySelector("#cfg-data-filter-points-z").value = pointsGlobalConfig.filterPointsZ;
this.menu.querySelector("#cfg-hide-id-checkbox").value = pointsGlobalConfig.hideId;
this.menu.querySelector("#cfg-hide-category-checkbox").value = pointsGlobalConfig.hideCategory;
this.menu.querySelector("#cfg-data-preload-checkbox").checked = pointsGlobalConfig.enablePreload;
this.menu.querySelector("#cfg-auto-rotate-xy-checkbox").checked = pointsGlobalConfig.enableAutoRotateXY;
this.menu.querySelector("#cfg-auto-update-interpolated-boxes-checkbox").checked = pointsGlobalConfig.autoUpdateInterpolatedBoxes;
}
show(target){
this.wrapper.style.display="inherit";
this.menu.style.right = "0px";
this.menu.style.top = target.offsetHeight + "px";
globalKeyDownManager.register((event)=>false, 'config');
}
hide(){
globalKeyDownManager.deregister('config');
this.wrapper.style.display="none";
}
}
export {ConfigUi}

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save